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1. Introduction

1.1. Motivation and Scope of Work

Low temperature plasmas are nowadays a well established tool with a diverse field of technical
applications. Beyond the already traditional usage for the purpose of lighting, as active media in
lasers, for plasma cutting and welding, and as electrical conductor, new applications can be found
like anisotropic etching, large scale plasma displays, or the field of surface modification in indus-
trial production. The control and optimization of low temperature plasmas is a field of ongoing
research. New methods for the characterization of low temperature plasmas, allowing feedback
for the control of plasmas and the comparison to theoretical models are strongly desirable.

In physical research, dc gas discharges serve as a non-equilibrium kinetic system, which is well
reproducible and easy to handle. Discharges are used, e.g. to study the physics of phase transitions
or the evolution of chaotic behavior. The investigations of simply structured glow discharges allow
to gain insights into the physical processes in low temperature plasmas, which form the necessary
basis for future exploration of processes in complex plasmas. As a consequence, the properties of
glow discharges and their experimental operation are well documented in literature, enabling the
validation of results obtained with new methods.

The electron energy distribution function (EEDF) plays a major role in the characterization of
low-temperature plasmas. It reflects the balance between the heating and the release of energy
in form of heat, light or fast particles. Therefore knowledge about the EEDF is desired in many
of the practical applications mentioned above. Conventionally the EEDF is usually obtained by
measuring the current voltage characteristic of an electrical probe in contact with the plasma. In the
present work, a spectroscopic approach for the determination of the EEDF is demonstrated. This
non-invasive approach offers an interesting alternative to probe-measurements. It can be applied
in the presence of magnetic fields and strong gradients of the plasma parameters. In contrast to
probe measurements it doesn’t suffer from degradation by reactive plasmas and does not disturb
the plasma under investigation. Other optical methods for the measurement of the EEDF, like
Thomson scattering of irradiated laser light, need high experimental effort, especially for low
electron densities. In comparison, the experimental setup for emission spectroscopy is simple
and cheap. The measurements for the present work were performed using a simple overview
spectrometer, which is commercially available.

The interpretation of the spectroscopic data requires a detailed modelling of the elementary
processes in the plasma and the spectroscopic measurement. A large number of cross-sections,
lifetimes of excited states and branching ratios is needed to accomplish this. Advances in the
availability of these data, provided by the numerical solution of quantum mechanical models of
the atoms and ions in the plasma, open up new possibilities in the interpretation of spectroscopic
data. The aim of the present work is to show the potential of the currently available data in combi-
nation with with state-of-the-art probabilistic data analysis method1,2. The probabilistic approach
is needed for a consistent interpretation in the presence of deviations between model and the mea-
sured data, which are the effect of unavoidable inaccuracies in the large set of input quantities.
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1. Introduction

1.2. Existing Approaches for the Interpretation of Spectroscopic Data

The idea to use emission spectroscopy for the determination of the EEDF was brought up long
ago3. First attempts to use spectroscopy are based on line-ratio techniques, consisting of a mapping
of the intensities of different spectral lines onto electron temperature and density4. Ideally, line-
ratio techniques require a monotonic relation between the desired parameters of the EEDF and the
used line-ratios. This is not necessarily fulfilled for all plasma conditions. The present approach
is based on a method described by Fischer and Dose5, where a collisional-radiative model (CRM)
is used to relate a set of line intensities directly to the EEDF. In the present work, the model for
the spectroscopic data was extended to a direct modeling of the full spectrum, rather than the
analysis of derived line intensities. The use of the full spectrum allows to employ sophisticated
parameterizations of the EEDF, and is not limited to the reconstruction of a small number of
parameters (Ne, Te).

1.3. Proof of Principle using a Stable dc Discharge in Neon

The reconstruction of the EEDF is demonstrated using a using a cylindrical dc discharge in neon.
The neon discharge is a well-examined physical system (see e.g.6–14 and references therein for a
small selection) with a high reproducibility, thereby allowing for the comparison of equivalent dis-
charges with the same geometrical parameters, gas pressure, and electrical circuit. Consequently,
the EEDF obtained for the positive column and the anode region of the discharge could readily
be compared to results from literature. For the EEDF in the more complex and strongly inhomo-
geneous region near the cathode, however, no results from kinetic modelling were available for a
direct validation.
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2. Low Temperature Plasmas

2.1. Introduction

The aspects of low temperature plasma physics described in the following chapter define the con-
text and perspective of the spectroscopic approach to the electron kinetics. Comprehensive intro-
ductions to plasma physics and its branches can be found in many textbooks e.g. in Refs. (15–17).
In order to give the background for the concept the electron energy distribution function, main
aspects of electron kinetics in ionized gases and related elementary processes are described.

2.1.1. Plasma Physics

A plasma is a quasi-neutral many-particle system of free electrons, ions and neutrals It is some-
times referred to as the fourth state of matter beside the solid-, liquid-, and gaseous state. In
contrast to these three ordinary states, the transition to a plasma is not a phase transition in the
thermodynamic sense. The ionization increases gradually when more energy is coupled to the sys-
tem. A plasma can be created by heating a material until the thermal energy of the particles leads
to ionization of the gas. In typical laboratory or technical applications, however, the ionization
is mostly achieved by strong (direct or alternating current) electrical fields. The plasma state of
matter is associated with a number of characteristical properties, which are either connected to
the high particle temperatures (O(eV) or greater) or are caused by the existence of free charge
carriers, causing a high electrical conductivity and giving rise to collective effects, such as wave
phenomena.

2.1.2. A Brief History of Plasma Physics

The term plasma was introduced by Langmuir (1929)18, who was investigating the properties of
low pressure mercury discharges. He identified the free electrons and ions in the neutral back-
ground gas as an analogy to the red and white blood corpuscles in the blood plasma.

The first observations of ionization effects in air date back to as long as the late 16th century
when the charging of an electroscope through a flame was observed by Gilbert (1544-1603), the
personal physician of the English Queen Elisabeth16. The electrical conductivity of air was shown
by Coulomb (1736-1806) and attributed to the radioactivity of the environment by Elster (1854-
1920) and Geitel (1855-1923). The first efficient electrostatic generator allowing to artificially
produce spark overs was built by Otto von Guericke (1602-1686). In 1803 Petroff used a Voltaic
battery with around 1000 (!) cells to be able to create electrical arc-discharges in air, a light source
with until then unknown luminosity. Faraday (1791-1867) investigated the flow of electrical cur-
rent through evacuated glass tubes and discovered the glow discharge in 1831. From the middle
of the 19th to the early 20th century many prominent physicists engaged in research on electric
discharges in gases and cathode ray tubes in general19, the discovery of the free electron by Thom-
son, Townsend and Wilson in 189720 is an important result of that era. Up to around the year
1950 the interest in plasma physics was mainly driven by the investigation of astronomical and
geophysical phenomena (postulation of the Alfén wave 1942). In the early 1950s intensive work

3



2. Low Temperature Plasmas

Table 2.1.: Some applications of plasmas in technological applications

plasma propulsion devices First proposed around 1920.

magneto-hydrodynamic generator First funded research in 1938.

thermionic converter Used in atomic batteries as energy source in space flight.

glow discharges in lasers Leading to a revive of glow discharge physics.

fluorescent lamps First applications of mercury vapor lamps in the 1930s.

electrical circuit elements For example thyratrons, spark gaps, high voltages switches
and more.

plasma processing, etching In the second half of the 20th century plasma processing
has become a growing field with diverse applications.

was begun on the realization of a device for controlled nuclear fusion This brought plasma physics
to wider attention. In the course of the last century a number of technological applications for plas-
mas were invented, In table 2.1 an illustrative, non-exhaustive list of some envisaged or realized
examples is given. Also, as in many fields, the advancement in the availability of computational
resources allowed the solution of long well-known basic equations for increasingly realistic, com-
plex boundary conditions providing the means for the simulation of systems of practical interest
and triggering the development of new ideas? .

2.1.3. Characteristical Parameters of Plasmas

Unlike the three ordinary states of matter (solid, liquid and gaseous), plasmas exist in a wide
range of temperatures (if well defined at all) and densities, giving rise to vastly differing physical
properties and a variety of observed phenomena. In addition, the properties of the plasma may
depend on other external parameters like strength of electromagnetic fields used to create or confine
the plasma, or the degree of ionization of plasma21.

There exist different criteria for the classification of plasmas according either to the parameters
important for their description or according to the occurrence of certain physical effects. The most
important criteria are:

temperature Plasmas are broadly categorized in low and high temperature plasmas, when speak-
ing of technical applications, the latter basically consisting of fusion plasmas, while the
former consist of everything else.

thermality According to whether the different components (electrons, ions, neutrals) of the plasma
are in thermal equilibrium with each other, thermal and non-thermal plasmas are distin-
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2.1. Introduction

guished. As the electrons typically absorb most of the heating power used to sustain the
plasma their temperature can be much higher (O(1eV)) than that of the other particles.

plasma parameter The plasma parameter Γ is a dimensionless number, given the ratio of thermal
and electrostatic energy

Γ =
e2

4πε0a

1
kBT

(2.1)

(e: elementary charge, ε0: electric constant, kB: Boltzmann constant, T : temperature, a =
(4πn/3)−1/3: Wigner-Seitz radius (mean particle distance)).

Strongly coupled plasmas, which are typically in thermal equilibrium, are characterized
by Γ ≫ 1. The plasma is said to be ideal, when the plasma parameter is small (Γ ≪ 1.
In that case, the particles only interact with a smooth background field determined by the
collective effect of the other particles, rather than through pairwise interactions (collisions)
and a kinetic description is valid (cf. 2.1.4).

degree of ionization The particle densities of ions and neutrals determine the degree of ionization
of a plasma. In thermodynamic equilibrium, the Saha equation is used to determine the
degree of ionization which reads for the first (positive) ionization stage:

n+ne

n0
=

g+

g0

2(2πmekBTe)
(3/2)

h3 exp
(

χ

kBTe

)
. (2.2)

(n: densities, g: statistical weights. me: electron mass, kB: Boltzmann’s constant, Te: elec-
tron temperature, h: Planck’s constant, χ: ionization potential)

Since the degree of ionization is a continuous function in the electron temperature at given
densities, the gas-plasma transition is continuous as well. Therefore, this transition is not a
phase transition in its thermodynamic sense. The plasmas in glow discharges investigated
here have a low degree of ionization ∼ 10−4..10−8).

further effects and limitations Relativistic effects limit the classical description of plasmas in
temperature and density, i.e. when the thermal energy or the Fermi energy approaches the
mass equivalent of electrons, respectively. These plasmas are called relativistic plasmas or
relativistically degenerated, respectively. In the work we are far below these limits. Mag-
netic fields, both self generated and externally applied, play an important role for laboratory
plasmas. However, the magnetic effects are negligible in the case investigated here.

The neon dc-discharge which was used to prove the applicability of the present diagnostic ap-
proach is an example for a weakly-coupled, non-thermal, low-temperature plasma. During the
reconstruction procedure the intensity of lines in the emission spectrum is related to population
densities of excited states of neon atoms. This is only possible in plasmas with a temperature low
enough for a significant fraction of the atoms to be not (fully) ionized. The distribution functions
of the constituents of a thermal plasma have a Maxwellian form and their temperature can directly
be obtained from the Maximum of the black-body emission spectrum.

2.1.4. Kinetic Description of Plasmas

The term kinetic theory was first used in the context of Maxwell’s work22, which was continuing
the development of the ideas of Bernoulli, Joule, Clausius and others during the second half of the
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2. Low Temperature Plasmas

19th century. Kinetic theory explains macroscopic properties of gases, like its pressure or tempera-
ture, by the dynamics of the molecules, rather than their static repulsion. Maxwell’s achievements
were generalized by Boltzmann who formulated the basic equation of kinetic theory, which still
holds in its original form, although more rigorous derivations are available today23.

Once kinetic theory was established, the application of its ideas to the case of ionized gases
was natural24. It was recognized experimentally25, that the electrons and ions in a plasma can
frequently be approximately described using the Maxwellian velocity distribution derived in the
kinetic theory of neutral gases under the assumption of local thermal equilibrium.

The basis for the kinetic description of a many-particle system is the velocity distribution func-
tion f (~x,~v, t), which quantifies the number of particles in the volume element of phase space
[(~x,~v),(~x+ d~x,~v+ d~v)] at time t. This is an effectively simplified description, whose feasibility
was recognized early, and which can also be derived more rigorously23. The microscopic infor-
mation which is not contained in f (~x,~v, t) is the relative location and velocity of the particle on
small length- and time-scales, the small scale correlations. The validity of a dynamical theory
for the many-particle system based on f (~x,~v, t) is based on a number of assumptions listed e.g.
in Ref (23). Among these assumptions, the smallness of the influence of collisions is one which
requires special attention: It allows to treat collisions as a correction to the collision-less case,
considering only pair-wise or possibly three-body interactions. It is interesting to note, that this
approximation is fulfilled in a plasma and in a neutral gas for completely different reasons. In a
neutral gas, the range of the inter-particle (Van-der-Waals) force is small compared to the average
particle distance and collective interactions between more than two particles can be neglected. In
a plasma, on the contrary, the range r0 = λD of the electromagnetic force between the charged
particles is typically much greater∗ than the average particle distance n−1/3. In this case the in-
teractions with the cloud of particles in the Debye-sphere dominate over binary collisions and the
plasma particles can be treated as if they only interact with a smooth background field, treating
collisions as a small correction, again.

The statistical state of a system of N particles is in a complete - though in an intractably complex
- way described by the distribution function FN in 6N-dimensional phase space, which is spanned
by the coordinates and velocities of all individual particles:

FN(~x1,~x2, ..~xN ,~v1,~v2, ..~vN , t). (2.3)

Reduced i-particle distribution functions Fi(~x1,~x2, ..~xi,~v1,~v2, ..~vi, t) can be obtained by averaging
over the phase space coordinates of particles (i+1)..N:

Fi(~x1,~x2, ..~xi,~v1,~v2, ..~vi, t) =
∫

d~xi+1..d~xN d~vi+1..d~vN FN(~x1,~x2, ..~xN ,~v1,~v2, ..~vN , t). (2.4)

These allow a simplified description of the system. When the coupling between the different parti-
cles is weak, it is possible to describe the system by considering only one- and two-particle distri-
bution functions. The two-particle distribution function describes the effect of two-body interac-
tions while the one-particle distribution function completely neglects all microscopic correlations
between the particles.

The time evolution of FN is given by the Liouville equation from classical mechanics, when all
external and inter-particle forces are known. By sequential averaging over the particle coordinates,

∗This depends on the density and temperature regime of the plasma, there exist also plasmas, where the number
interacting particles is low, allowing a kinetic treatment analogously to the neutral gas case. In the intermediate
regime, where there is no small parameter allowing to terminate the BBGKY hierarchy, kinetic theory cannot be
applied.
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2.1. Introduction

the BBGKY hierarchy of equations for the reduced particle distribution functions is obtained from
the Liouville equation. The BBGKY hierarchy has the property, that each reduced i-particle distri-
bution function depends on the distribution function of next higher order. It can be terminated for
some order j, when the f j can be expressed in terms of distribution functions of lower order than j

and the obtained equations that form a closed system are called kinetic equations23. As mentioned,
the termination of the BBGKY hierarchy is possible when the coupling between the particles is
weak and correlation- (=collision-) effects can be treated as correction to the collision-less case.
Accordingly, the equations for the one-particle distribution function of the known sets of kinetic
equations are of the form

d f

dt
=

∂ f

∂ t
+~v ·~∇ f +

1
m
~∇V̄ (~x) ·~∇v f =

d f

dt

∣∣∣∣
col
. (2.5)

where V̄ (~x) is the average self-consistent potential acting on the particles and d f
dt

∣∣∣
col

is the collision

operator describing the effect of collisions. When collisions are neglected ( d f
dt

∣∣∣
col

= 0), equa-

tion (2.5) is called the Vlasov equation? , which describes the dynamics of the a plasma with its
self-consistent electro-magnetic background field.

In general, the form of the collision operator as well as the average potential depend on the
physical properties of the system. The collision operator of a gas of neutral molecules is the Boltz-
mann operator, which is a non-linear functional of f (~x,~v, t) and takes into account the differential
cross-section of the molecule scattering.

The collisions of charged particles in a plasma differ from the interaction of neutral molecules
due to the long range of the Coulomb force (compared to a the van-der-Waals force between neutral
particles). Instead of relatively few interactions with typically large scattering angles, charged
particles undergo a large number of small-angle scattering events. This behavior is described by a
Fokker-Planck-type† collision operator. The kinetic Landau equation has a form that is similar to a
diffusion equation and the dynamics of the Fokker-Planck-distribution function shows a diffusion
like behavior, accordingly: deviations from the Maxwellian equilibrium distribution gradually
decay like density fluctuations in a diffusive material.

When the BBGKY hierarchy of a plasma is closed by expressing the next higher order (three-)
particle distribution function in terms of the one and two particle distribution functions, the kinetic
Lenard-Balescu equation27 is obtained. The latter differs from the Landau equation in that the
the Balescu collision operator is a much more non-linear functional of the distribution function.
The screening of the Coulomb potential in a cloud of charged particles, which was discovered by
Debye 192328, appears in the Balescu equation derived from first principles.

The kinetic equations provide a detailed physical picture of a plasma, in principle allowing for
a rigorous description by taking into account higher order correlations. A number of phenomena,
like Landau damping, collisional transport, and others can be described in the kinetic picture. The
solution of the full equations, however, may become quite involved, especially when complex
boundary conditions are considered during the modelling of realistic plasma systems.

There are a number of simplifying assumptions, which are frequently applied to allow for an
efficient description in these cases. Symmetries in the system may be used to reduce the number of
relevant dimensions of the problem, or it may be sufficient to consider the spatially homogeneous
case. The large difference in the electron and ion mass may allow to neglect the energy exchange

†The collision operator first derived by Landau 26 also has this property. Therefore, sometimes also the term Landau-
collision operator is used.
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2. Low Temperature Plasmas

between the two ensembles (Lorentz-gas approximation) Sometimes a kinetic description is not
needed for all particle species in the plasma.

The so called fluid description is obtained from the kinetic equations by integrating the kinetic
equations over velocity space, yielding equations for the moments of the velocity distribution
function. The full set of equations for all moments is equivalent to the kinetic description, but
usually only the lowest two or three moments are considered, when a simplified description is
desired23.

In 2.2.2 some properties of an efficient model comprising a kinetic treatment of the free electrons
of the neon dc-discharge are described.

2.1.5. Electron Energy Distribution Functions

The electron energy distribution function f (E,~r)is obtained from the kinetic velocity distribution
function by a variable transformation:

E =
1
2

m~v2 (2.6)

Since the transformation cannot unambiguously inverted, the energy distribution function contains
less information than the velocity distribution function. The transformation can be computed, by a
change to spherical coordinates and integration over the azimuthal and polar angle of the velocity:

fi(E,r) =
∫∫

v2 sinθv dφv dθv fkin,i(φv,θv,v,~r)
dv

dE
(2.7)

for isotropic EEDFs fkin,i(v,~r) with no explicit dependence on φv and θv this simplifies to

fi(E,~r) =
4π v

m
fkin,i(v,~r) (2.8)

2.2. Properties of Glow Discharges

The term discharge was first used to describe the electrical break down through the air filled gap of
an electrical circuit containing a capacitor. Later it was used for any flow of electric current through
ionized gas, as well as any process of ionization of a gas by an applied electrical field17. A gas
discharge at low pressures (∼ 101..103 Pa) with a discharge current that is limited by the external
circuit (∼ 10−6..10−1 A for a discharge with lateral dimension ∼ 1cm) is called glow discharge.
The voltage needed to sustain a dc glow discharge is in the range of hundreds to thousands of volts.

There are different modes of operation of glow discharges. Depending on the precise pressure
and discharge current the column plasma may form different configurations of stable regions with
varying brightness and especially for higher pressures ionization waves travelling from cathode to
anode may occur17. In Fig. 2.1 a schematic picture of a stable stratified glow discharge is given.
The clarity of the occurrence of the different dark and luminous layers is most pronounced at low
pressures. The size of the cathode layers depends on the mean free path of the electrons. The
positive column fills the residing gap towards the cathode. Its length depends on the size of the
discharge tube.

In the regime of the normal discharge the current voltage characteristic of the discharge has
got a negative slope, leading to the necessity of the external limitation of the discharge current
by an ohmic resistor (O(kΩ)). This behavior is caused by a positive feedback between increased
ionization and increased electron density. The glow discharge is one of the most widely applied and
well investigated type of gas discharges. A lot of experimental and theoretical results are available
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Figure 2.1.: Schematic picture of a stable dc glow discharge with the names of the different dark and lumi-
nous layers (luminous layers are indicated by red color).

in literature. The experimental operation is simple, the production and filling of the discharge
tube being the greatest difficulty. The reproducibility of experimental conditions is also very good,
allowing the comparison with results from literature for a given set of discharge parameters.

2.2.1. Qualitative Picture of Processes in Gas Discharges

The physical processes in a non-thermalized low-temperature plasma like the glow discharge are
dominantly determined by the free electrons. Due to their high mobility they gain energy in the
electric fields used to sustain the plasma. The light emission pattern in a stable low pressure
glow discharge can be qualitatively understood by following the path of electrons emitted from the
cathode:

The electrons are emitted from the cold cathode of the discharge mostly due to secondary emis-
sion caused by ion bombardment. Typical energies of the ejected electrons are less than 1eV. In
the strong field of the Aston dark space the electrons gain energy, until they reach the threshold to
cause atomic excitation of neutral gas atoms. When the energy grows further, the excitation cross-
sections start to fall off, causing the formation of the cathode dark space. In this region most of the
ionization takes place, leading to electron multiplication. The slow moving ions build up a large
positive space charge, shielding the bulk of the discharge from the strong electrical field in the
cathode region. The weaker field lead to moderate electron energies in the region of the maximum
of the excitation cross-sections, and the negative glow forms. The electrons loose energy in the
negative glow by collisions and the (sometimes even reversed) field of the positive space charge.
When the electrons don not reach the excitation threshold any more the Faraday dark space builds
up. In the Faraday dark space the electric field gradually increases to the value in the positive
column. In front of the anode a region of negative space charge is formed, leading to an increased
field directly in front of the anode causing the anode glow.

The electrons of the glow discharge plasma are an example of a non-equilibrium kinetic sys-
tem. The energy distribution is determined in the balance between plasma-heating and energy
dissipation in inelastic collisions with atoms. In certain parameter regimes a stable steady state
is reached (stable glow discharge). A survey of discharge regimes can be found in Fig. 2.2. The
typical velocity distribution of a non-equilibrium low-temperature plasma is similar to, though de-
viating in detail from, a Maxwell-Boltzmann distribution and has a slight asymmetry reflecting
the drift of the electrons towards the anode. The exponentially decreasing tail of high-energetic
electrons causes excitation and ionization of atoms. The degree of ionization is typically in the
range of 10−8..10−4.

9



2. Low Temperature Plasmas

Figure 2.2.: Discharge regimes of neon glow discharges as a function of the similarity parameters radius
normalized current i/r and pressure times radius. The figure was adapted from Ref. (? )

Similarity Laws

In general, the particles in a plasma are exhaustively described by a set of kinetic equations
(cf. 2.1.4) for the different species (like electrons, atoms in different states, ions and molecules)
and accounting for the (self-consistent) electromagnetic fields obtained from Maxwell’s equations,
which have to be solved accounting for the charged particles of the plasma as well as external
boundary conditions.

The properties of cylindrical discharges obey so-called similarity laws. This means, that the
plasma properties are very similar for discharges with identical similarity parameters p · r0 and
I/r0 (gas pressure p, tube radius r0, discharge current I). Accordingly, the equations of state of
a plasma have to show a at least approximate invariance properties to respective transformations.
It was shown by Ref. (6), under which conditions this fulfilled for the Boltzmann equation of the
electrons, as well as for Maxwell’s equations in matter.

Elementary Processes

The ground-state atoms or (to be more general) molecules of the plasma get excited to various
kinds of unstable states, like excited or ionized atoms, atoms with free bindings, fractions of
molecules or free radicals in the energetic environment of the plasma. Each production or destruc-
tion channel of a particle species, most of which are two body interactions is called elementary

process. The kinetics of the population densities ni of excited states i are described by a set of rate

equations of the type
dni

dt
=−R(i →)+R(→ i)+Γi (2.9)

where R(i →) and R(→ i) are the sums of the rates of all transitions out of and into the atomic
level i, respectively, and Γi is the external flux of particles caused by diffusion and convection.
The time scales of the elementary processes are often very short compared to the speed of the
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2.2. Properties of Glow Discharges

variation of the plasma conditions. In that case, which will be considered in the following, state
populations are in a quasi steady-state and the left hand side of equation (2.9) vanishes, allowing to
solve the rate equation for ni. The system of rate equations obtain in this way is called collisional-

radiative model. In the high density case, when thermal equilibrium can be attained at least locally,
the excited states are populated according to Boltzmann statistic. In that case it is not necessary
to solve the full collisional-radiative model. Another well-known approximation to the full rate
equations is the corona-equilibrium, which is valid at very low densities? . In the intermediate
density range, where typical densities of glow discharges lie, like many plasma used in technical
applications, the collisional radiative model has to be solved.

Table 2.2.: Elementary processes important in an atomic plasma

Xz + e ⇋ X∗
z + e collisional excitation and de-excitation

Xz + e ⇋ Xz+1 + e+ e collisional ionization and three body recombination

Xz + h̄ω ⇋ Xz+1 + e photo-ionization and radiative recombination

Xz + e ⇋ X∗∗
z → X∗

z + h̄ω dielectronic recombination and auto-ionization

Xz + e ⇋ Xz + e+ h̄ω Free-free emission and absorption (Bremsstrahlung)

X∗
z ⇋ Xz + h̄ω Excitation due to photon absorption and spontaneous

photon emission

In table 2.2 the relevant elementary processes of an atomic (rare gas) plasma are summarized.
The rates of all processes with one electron in the initial state can be expressed in terms of a
cross-section σ :

R = neni

∫ ∞

0
v ·σ(E) f (E)dE, v =

√
2E

me

, (2.10)

where ne is the electron density, ni is the density of atoms in the respective initial state, and v is the
velocity of an electron with energy E.

The transition probability of spontaneous emission is an atomic property, which independent
from the plasma state and quantified by the Einstein coefficient A:

R = A ·ni (2.11)

In the case of an optically thick plasma, however, the reabsorption of resonance photons leads to
an apparent reduction of the transition rate, cf. 2.2.1.

The rates of processes involving three particles in the initial state are proportional to the flux
of both collision partners. For example in the case of three body recombination equation (2.12)
generalizes to:

R = n2
enion

∫ ∫
v1v2 · f (E1) f (E2) ·σ(E1,E2;E) f (E) dE1 dE2 (2.12)
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The rate equations for the different atomic states are coupled due to different elementary pro-
cesses like step-wise excitation or radiative transitions between excited states. Apart from few
exceptions, the rates are proportional to the density of atoms in the respective initial state, causing
the rate equations to form a system of coupled linear equations. See 5.2 for the details of the CRM
used for the modelling of the spectroscopic data of the neon discharge.

Radiation Transport

Resonance radiation emitted by excited atoms can easily be absorbed by atoms in the final state of
the respective transition. If the absorber density is high, which is usually the case for transitions to
the ground state or metastable exited states, the opacity of the plasma for the respective radiation
has to be accounted for. The absorbing atom is excited to the upper state and re-emits a photon after
time given by the characteristical life-time. After a number of repeated emissions and absorptions
the photon escapes the plasma volume. This behavior resembles many features of particle diffusion
and is called radiation transport. It is due to this similarity, that early approaches to model radiation
transport are based on a diffusion equation.

There are, however, two important differences with respect to diffusion of particles: the first
is the finite life-time of the excited states, delaying the re-emission of the photon. The diffusion
equation can be adapted to this situation by the incorporation of an additional term29. The sec-
ond more severe difference is the strong dependence of the emission and absorption probability
on the precise energy or frequency of the photon, determined by the line shape of the transition.
Slight changes in the photon-energy during a absorption/reemission process (this effect is called
frequency redistribution) lead to an undefined mean free path of the photons, prohibiting a descrip-
tion of radiation transport by a simple diffusion equation29.

When the quantity of interest is the number of photons which leaves the plasma for a given
spatial distribution of the excited states, the effect of the reabsorption of radiation can be expressed
by a single number, the escape factor Λ. The latter indicates the fraction of photons leaving the
plasma with respect to the number of photons emitted according to the natural time of life of the
excited state.

Due to the above considerations, it is necessary to consider the precise line-shape and the un-
derlying physical mechanisms for the description of radiation transport. Under the assumption
of complete frequency redistribution during each absorption/re-emission event, the spatiotemporal
evolution of the excited state densities n(~r, t) is described by the Holstein-Bibermann equation:

∂n(~r, t)

∂d
=−1

τ
n(~r, t)+

1
τ

∫

V
n(~r′, t)G(~r,~r′)d~r′ (2.13)

(lifetime of the atomic state τ , Plasma-volume V ). The kernel function G(~r,~r′) quantifies the
probability that a photon emitted at point ~r′ is reabsorbed at ~r, this is where the line-shape of
the transition enters the equation. The general solution of the Holstein-Bibermann can be written
down as expansion in eigenmodes, which decay exponentially with time. In cylindrical discharges,
the distribution of the excited states is similar to the fundamental mode of the Holstein-Bibermann
equation29. In this case the the decay constant of the lowest order mode, which is called the
trapping factor, agrees well with the escape factor Λ. Formulae for trapping factors can be obtained
in closed form using equation (2.13), when the line-shape can be well approximated either by a
Gaussian distribution (Doppler-broadening) or a Lorentzian line-shape (collisional-broadening or
natural line-shape), see e.g. Ref (29) for trapping factors in various geometries. When the line-
shape has to be described by a Voigt profile (which is the case when Doppler- and collisional-
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2.2. Properties of Glow Discharges

or natural line-broadening are important) the correct trapping factor has to be obtained from an
appropriate interpolation between the two line-shapes. Available interpolations are not perfect at
all opacities, an improved description can be achieved by taking into account partial frequency

redistribution.

The simplifying assumption of complete frequency redistribution stands for the independence
of the emission frequency from the frequency of the absorbed photon. A refined version of this
concept, where the emitted photon at least partly ’remembers’ at which frequency it was absorbed
is called partial frequency redistribution (PFR). A generalized version of the Holstein-Bibermann
equation for this case exists, but in practical applications, radiation trapping with PFR is frequently
described using Monte-Carlo simulations. In this approach the Doppler broadening can be de-
scribed in a fundamental way by randomly choosing an appropriate velocity for the absorbing and
re-emitting atom and computing the Doppler shift between the atomic rest-frame the laboratory-
frame. The redistribution in the rest-frame of the atom due to collisional broadening and the natural
line-shape is obtained from a quantum mechanical description of the absorption/re-emission pro-
cess29. The escape factors used in the collisional-radiative model and for the determination of
the local emissivity are based on calculations of radiation transport taking into account PFR by
Ref. (30) (cf. 5.5). In this work the results of different Monte-Carlo simulations covering a wide
range of parameters concerning gas density, column radius and Doppler-width are summarized
using empirical formulae.

2.2.2. Kinetic Modelling of Gas Discharges

The EEDF resulting from the present analysis is compared to a kinetic ab-initio model13. The
model for the neon glow discharge plasma is based on an efficient combination of a kinetic treat-
ment of the electrons together with the solution of steady-state fluid equations for the charge car-
riers in their self consistent radial electrical field. The most important collisions in the weakly
ionized plasma are (elastic, inelastic an ionizing) electron-atom collisions, which are described
by Boltzmann collision operators. Electron-electron collisions, leading to an additional Fokker-
Planck type collision operator are not considered in Ref. (13). The angular dependence of the
velocity distribution is implemented using an expansion in spherical harmonics. In the considered
parameter regime, where the distribution is approximately isotropic because of elastic electron-
atom collisions, a description facilitating the two-term expansion31 is a good approximation. A
non-local parameterization of the EEDF, which uses the total energy ε = 1

2 mev2 −e0Vr(r) in order
to account for the expected shift of the EEDF according to the radial electrostatic potential V (r) is
used32. Nevertheless, the kinetic equation is set up radially resolved allowing for deviations from
the strictly non-local approximation.

The result of the kinetic treatment are electron transport coefficients and ionization frequencies,
which enter the fluid description of the charge carriers. A detailed treatment of excited atoms,
comprising the four lowest lying excited states and an additional lumped level, is part of the model,
it is required e.g. for a correct description of the ionization in the plasma.

The result of the kinetic self-consistent model is an exhaustive description of the plasma in the
positive column, revealing, e.g., the spatial distribution of charged particles and excited atoms, the
electrostatic potential, and in particular the electron energy distribution function at different radial
positions as shown in Fig. 2.3.
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Figure 2.3.: Results of kinetic reference modelling of the discharge investigated in this work (neon pressure
Pa). The figures are taken from a paper by Uhrlandt and Franke13. In the upper left figure, the
isotropic part of the electron energy distribution function as a function of the kinetic energy
is shown for different radial positions at a discharge current of 2 mA. The upper right figure
shows the radial variation of the mean energy ue, the diffusion coefficients De and the mobility
of electrons be for the discharge currents as designated. The lower left figure show the radial
profile of the electron density ne and the variation of the space-charge potential Vf . The lower
right figure shows the radial profile of excited state atoms and ion and electron density profiles,
respectively, at 20 mA.
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2.2.3. Electronic Excitation

Unlike in photo-excitation processes where selection rules apply, essentially all excited states of an
atom can be populated. This comprises also the population of long-lived metastable atomic states,
which take part in secondary electron collisions leading to step-wise excitation and ionization of
the atoms. These reaction channels can give significant contributions to the population of the
excited states in non-thermal plasmas.

2.2.4. Resonance Radiation

An atom in the excited state k will decay into a state i with lower energy and emit a photon
carrying away the energy-difference ∆Eki with a certain probability per unit time, which is given
by the Einstein coefficient for spontaneous photon emission Aki. The power emitted from a unit
volume into a unit solid angle, which is called the spontaneous line emission coefficient is given
by:

εki =
1

4π
nk∆EkiAki (2.14)

The observation of the emitted light of a certain transition k → i allows the direct determination
of the excited state density nk, when the emitting plasma volume and Einstein coefficient are
known and the reabsorption of the emitted photons can be neglected (cf. 2.2.1). Together with the
electronic excitation this relation is a key ingredient for the reconstruction of the EEDF using the
spectroscopic approach.

2.3. Determination of Excitation Cross-Sections

The availability of computational power allowing for the implementation of detailed plasma mod-
els has created a growing demand for precise atomic data in the last decades. At the same time the
experimental and theoretical investigation of atomic physics has reached increasing levels of so-
phistication. The cross-sections (and Einstein coefficients) used in the present analysis are obtained
from theoretical ab-initio calculations. Generally, theoretical calculations have the advantage, that
complete data sets are available for all excitation channels from the ground (and sometimes the
metastable states) into the considered excited states. The development of theoretical models does
on the other hand, heavily depend on validation by experimental data.

The most common experimental method for the determination of excitation cross-section is
electron-energy loss spectroscopy. Optical techniques are used for the measurement of excitation
channels, with a radiatively decaying final state. Proper corrections for cascade contributions and
branching have to be applied to the photo-emission cross-sections in that case. Recent advances of
scattering experiments include the absolute measurements of cross-sections, experiments using co-
incidence techniques, spin polarized projectile beams and targets, high-energy-resolution electron
beams, and bright beams of electrons33.

2.3.1. Theoretical Calculations of Cross-Sections

A brief overview over the methods for the calculation of atomic collision cross-sections shall be
given here. It is based on a review article33. The focus is not set on the detailed and formally correct
statement of the expressions, which would be needed for practical calculations, but on the basic
ideas of the different approaches. Accordingly, normalization factors and spin wavefunctions are
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usually left out for reasons of simplicity, but the important approximations and ansatzes are stated
explicitly in the following.

Most theoretical derivations of cross-section of electron impact excitation are based on the so-
lution of the time-independent Schrödinger- or Dirac equation for the (N + 1) electron collision
system, consisting of the N electrons of the target atom plus the projectile-electron. Recently, so-
lutions of the full relativistic problem, making use of the Dirac equation became available34, but
this discussion is focussed on the simpler non-relativistic case. Also, initial value methods like
time-dependent close-coupling or exterior complex scaling are being developed recently with the
help of massively parallel supercomputers. These more direct methods have got the advantage, that
the wave functions don not have to be described by finite basis sets. The extensive requirements of
computational resources effectively restrict these methods to (quasi-) one or two electron systems
at the moment.

In the following, the the time-independent problem will be formulated and two important classes
of solutions, namely the close coupling expansion (CC) based solutions and the Born series based
ones will be described. The former delivers a good description in the low-energy regime from the
excitation threshold to the ionization energy of the atom, where so called "Feshbach"-resonances
occur in the cross-sections. At higher energies than the ionization-threshold electrons of the target
atom may be excited to unbound continuum states, whose effect can be described to some ex-
tent by the introduction of pseudo-states in the CC framework. This non-trivial extension of the
approach allows its application at intermediate and high energies and the treatment of ionization
collisions. Born series based solutions of the scattering problem, which are in general computa-
tionally much less demanding than close coupling methods, deliver appropriate solutions in the
"high-energy" domain greater than several times the ionization threshold. They are based on a per-
turbative approach and usually neglect coupling effects between the excitation of different states of
the target atom (channel coupling). The ionization cross-sections can be obtained from Born series
based computation in a similar way to the excitation cross-sections without the need for special
extensions of the approach.

The Scattering Problem, Scattering Amplitude and Cross-Section

The quantum mechanical description of the scattering problem is formulated here before the basic
ideas of the CC and born series approaches are outlined. The non-relativistic stationary case, which
we focus on here, is described by the time-independent the Schrödinger equation:

HN+1|Ψ〉= E|Ψ〉. (2.15)

Where E is the energy of the whole N + 1 electron system (N target electrons plus projectile),
described by the wave function |Ψ〉. The Hamiltonian HN+1 of the electrons in the Coulomb
potential of the target nucleus with nuclear charge Z has the form (in space coordinates):

HN+1 =
N+1

∑
i=1

(
−1

2
∇2

i −
Z

ri

)
+

N+1

∑
i> j=1

1
ri j

(2.16)

where the ~ri are the coordinates of the ith electron and ri j = |~ri −~r j| the distance between two
electrons. The origin of the coordinate system is the target nucleus which is assumed to have an
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infinite mass. We are looking for solutions fulfilling the asymptotic behavior:

Ψi →
r→∞

Φie
ikiz +∑

j

Φ j f ji(θ ,φ)
eik jr

r
(2.17)

Where f ji is the scattering amplitude describing the angular distribution of the outgoing electron,
and Φi are the target eigenfunctions describing the bound state of N electrons fulfilling the eigen-
value equation (eigenenergy wi of bound state i)

〈Φi|HN |Φ j〉= wiδi j. (2.18)

The inelastic scattering changing a specific initial into a specific final state is called a scattering
channel. When a scattering channel is energetically allowed it is said to be open, otherwise it is
called closed.

Here and throughout the discussions, the part of the wavefunction describing the spin is omitted
for reasons of simplicity. The descriptions of the different methods below will conclude with the
respective wave-function solving the Schrödinger equation. It is assumed, that the scattering am-
plitude can be obtained from the resulting wave-functions by the consideration of the asymptotic
behavior given in equation (2.17). Among factors accounting for the angular momentum conser-
vation and the correct normalization of the wave functions, this involves matrix elements having a
form similar to:

f ji ≃ 〈Φ j,ψe|Ψi〉 (2.19)

where the fraction of the atoms in the respective final state Φ j is obtained by projection. ψe is the
part of the wavefunction describing the scattered electron typically by a plane or distorted plane
wave. The cross section is obtained from the scattering amplitude using the relation:

dσ ji

dΩ
=

k j

ki

| f ji(θ ,ϕ)|2 (2.20)

For targets with high nuclear charge Z relativistic effects become important even for low-energy
scattering. This effects the target wave functions Φi and also the wave function of the scattered
electron. One way of achieving a relativistic description is the use of the Breit-Pauli Hamiltonian
where terms accounting for the one-body spin orbit interaction, the mass correction, the Darwin
term as well as possibly two-body relativistic terms are added to the Hamiltonian HN+1. Alterna-
tively a description based on the relativistic Dirac equation may be employed. The principle ideas
of the solution of the problem, do not depend on wether a relativistic description is used. The
following discussion is based on the non-relativistic case for clarity.

Born Series

The Born series is a perturbative approach to the scattering problem (2.15), which is based on a
splitting of the Hamiltonian HN+1 into a part describing the unperturbed atom HN and the free
electron Kp and a part describing the interaction between the two HI:

HN+1 =
(
HN +Kp

)
+HI, HI =− Z

rN+1

N

∑
j=1

1
ri(N+1)

. (2.21)
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In that case the Schrödinger equation (2.15) can be rearranged to the Lippmann-Schwinger equa-
tion (see e.g. Ref? )

|Ψi〉= |Φi,~k〉+
1

E −HN −Kp + iε
HI|Ψi〉 (2.22)

Where |Φi,~k〉 is the combined wave function of the target atom |Φi〉 and the free particle |~k〉. The
Lippmann-Schwinger equation can be solved formally by the so called the Born series:

|Ψi〉= |Φi,~k〉+G+
0 HI |Φi,~k〉+G+

0 HIG
+
0 HI |Φi,~k〉+ . . . , (2.23)

where the Green’s function operator G+
0 = (E −HN −Kp + iε)−1 is used. When the interaction

Hamiltonian HI is small compared to the free Hamiltonian HN +Kp the Born series can be expected
to converge and would deliver the exact solution of the Schrödinger equation when it could be
carried to infinity.

In particular do the higher order terms of equation (2.23) describe the coupling between the dif-
ferent excitation channels by the repeated application of the G+

0 HI operators to the states G+
0 HI|Φi,~k〉,

which are mixed states in the unperturbed atomic basis. In practice these terms are usually not con-
sidered and higher orders of perturbation are, if at all, only computed for the wave function of the
scattered electron. This is the major simplification compared to the close coupling approach, which
disallows the description of Feshbach-type resonances and makes the Born series approaches in-
appropriate for scattering near the excitation threshold.

The elastic scattering at high energies, in contrast, can often be already described by the so called
First Born approximation, where only the first term is kept. In that case the incoming, as well as the
outgoing electron is described by a plane wave. In general, it is important to retain consistently all
terms of the series which have a similar dependency on the momentum transfer33 |~ki −~k f |. Cross-
sections obtained by Born series based approaches show the correct asymptotic behavior for high
energies, which is σB ∝ E−1 lnE for dipole allowed transitions (∆l = ±1, ∆S = 0), σB ∝ E−1 for
parity forbidden transitions and σB ∝ E−3 for spin forbidden transitions.

Distorted-Wave Method The perturbative approach, which consists of the division of the Hamil-
tonian HN+1 into a dominant part, which is solved exactly and a small correction, which is treated
as perturbation, can be carried through in different ways. A part of the projectile-target inter-
action HI can be incorporated in the non-perturbative Hamiltonian. The plane wave describing
the free electron is in this case replaced by the distorted wave χE , which is determined by the
differential equation [

d2

dr2 −
l(l +1)

r2 −2HI,D(r)

]
χE(r) = 0 (2.24)

where HI,D is the part of the interaction treated exactly. The transition matrix elements are then
calculated with the help of the distorted waves, treating in first order the part of the interaction not
treated in the distortion potential HI,D. The distortion of the incident and scattered electron wave
is particularly important in the case of the scattering on ions, where the long range coulomb forces
have to be considered. This is than called Coulomb-Born approximation.

The distorted wave born approximation (DWBA) becomes more accurate at intermediate ener-
gies and with increasing charge of the ion. Consequently it is a useful tool under these circum-
stances. Partial-wave cross sections at high angular momenta can also be accurately described by
Born series based approaches, because the angular momentum barrier depresses the importance of
the coupling potential.
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2.3. Determination of Excitation Cross-Sections

The first-order plane wave approaches (FBA) generally overestimates cross-sections in the vicin-
ity of their maximum by a factor of two to three. This is an effect of the neglected polarization
of the atom by the incident electron. In many cases of practical interest, however, the results of
the FBA calculations can be used to get reasonable results for optically allowed transitions by
employing a rescaling transformation of the results suggested by Kim35.

The Close Coupling Expansion

Now a class of solutions of the Schrödinger equation (2.15) is considered which makes use of
an expansion of |Ψ〉 in the basis of solutions |Φ j〉 of the N electron Hamiltonian (and possibly
pseudo states added to the set of |Φ j〉) The corresponding expansion coefficients play effectively
the role of wave functions for the scattering electron. In spatial coordinates a typical close coupling
expansion has the form:

Ψi = A ∑
j

Φ j(~r1, . . . ,~rN , r̂N+1)FE,i(rN+1)+∑
j

χ j(~r1, . . . ,~rN+1)a ji (2.25)

Where the operator A antisymmetrizes the first summation according to the Fermion statistics
of the electrons. The channel functions Φ j are obtained by coupling the target states Φi with the
angular (and spin, though not considered here) dependency (unit vector r̂N+1) of the wave function
of the projectile-electron. The functions Fji(rN+1) are called the reduced radial functions of the
scattered electron. The additional anti-symmetrized and square-integrable correlation functions
χ j can be used to describe additional short-range correlations. They are also needed when an
orthogonality condition between Fji and the radial dependence of the bound orbitals is imposed
for reasons of numerical convenience.

In numerical implementations the expansion has to be cut off after a number of states. The
simplest case, where only one final target state is retained, is called the static exchange approxi-

mation. When more target states are considered, the transitions between all states of the expansion
can be calculated, but the obtained cross-section are typically only accurate up to the threshold
of the highest state kept in the expansion. The coupling to open and closed channels retained in
equation (2.25) arises naturally in the close coupling framework.

By substituting (2.25) into the Schrödinger equation (2.15), projecting onto the basis states Φ j

and χ j and eliminating the coefficients a ji, a system of coupled integro-differential equations for
the radial functions Fji is obtained:

(
d2

dr2 −
l j(l j +1)

r2 +
2Z

r
+ k2

j

)
Fji(r) = 2∑

l

(Vjl +Wjl +X jl)Fli(r), (2.26)

where l j is the orbital angular momentum of the scattered electron and Vjl , Wjl and X jl are the
partial-wave decompositions of the local direct-, nonlocal exchange-, and nonlocal correlation-
potential. The potential Vjl describing the repulsion of the N target electrons can be written as

Vjl(rN+1) =

〈
Φ j

∣∣∣∣∣
N

∑
i=1

1
ri,N+1

∣∣∣∣∣Φl

〉
, (2.27)

where the integral is taken over all N + 1 electron space coordinates except for the radial coor-
dinate of electron N + 1. The non-local exchange and correlation potentials Wjl and X jl cannot
be formulated analytically. In practical implementations, they are constructed by special program
packages.
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2. Low Temperature Plasmas

The equations of the CC expansion (2.26) are solved by a number of different methods. To be
mentioned are the R-Matrix methods, the reduction of (2.26) to linear algebraic equations, the non-
iterative integral equations method and the Kohn variational method. In Ref. (33) more literature
on these methods is given. Significant work has been devoted to account in some approximate way
for the high lying discrete and continuum states of the target. This resulted in the so called conver-
gent close coupling method? and the R-matrix with Pseudo-States method (RMPS) proposed by
Bartschat et al.? based on the same idea. The program package BSR62 is based on the use of basic
spline ("B-splines") as a universal and effectively complete basis to expand the wave function of
the scattering electron inside the R-matrix box. The cross-section for electronic excitation of neon
used in the present analysis are obtained by the BSR package. The use of basis of term-dependent,
non-orthogonal sets of orbitals reveals a very accurate target description. The BSR approach can
be used also when pseudo states are used to account for the effects of continuum-coupling. As in
other solution methods, the number of pseudo states needed for an accurate description, especially
of complex targets like neon, however, may be considerable67. The data set of Einstein coefficients
used in the present analysis is obtained from these structure calculations.

2.3.2. Rates of Direct and Reverse Processes

The matrix element Ta→b = 〈a|T |b〉 is equal to the time reversed process Tb→a = 〈b|T |a〉 if the
Hamiltonian of the interaction is time-reversal-invariant. It can be shown that for the cross-section
of the reverse process in that case the following equation holds36:

k2
b ·dσba = k2

a ·dσab (2.28)

where ka,b is the momentum of the scattering electron in the initial state of the transition.
The same relation can be obtained by considering a plasma in local thermodynamic equilibrium,

where detailed balance holds, which states that the rate of each process has to equal the rate inverse
process. In order to fulfill this condition for any electron temperature Te, the cross-section for an
electronic excitation process has to fulfill the Klein-Rosseland formula

gb · (E +∆E) ·σba(E +∆E) = ga ·E ·σab(E) (2.29)

where ∆E is the threshold energy off the cross section and ga,b is the statistical weight of the level
a or b, taking into account the multiplicity of degenerated levels. This relation is used to obtain
the cross-sections for electronic de-excitation in the present analysis.

2.4. Atomic physics in the Discharge in Neon

This section summarizes the basic notions for the neon spectroscopy in the investigated discharge.
In table 5.1, a survey of states used in the spectroscopic model is given for the 14 lowest lying

states in neon, a more extensive table is given in Appendix E for reference.
Figure 2.4 shows a simplified Grotrian diagram of neon also indicating the most relevant emis-

sion multiplets. The red lines, predominantly visually noticed, emerge from the 3p → 3s multiplet.
The strongest lines to the ground state are in the vacuum ultraviolet spectral range. Additional in-
formation from multiplets ending in the 3p levels and 4p → 3s transitions are also used in the
present work.

The Grotrian diagram allows to identify the energies which are ’probed’ by the emission spectro-
scopic measurements, i.e. the energy differences corresponding to the electron excitation energy
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Figure 2.4.: Energy level diagram of neutral neon. The thickness of the shown transition reflects the line-
strength37, the data is taken from NIST37.

energies from the most populated states, i.e. the ground state and the 3s levels. As it will be
shown later, these differences can be identified in the sensitivity analysis of the reconstruction of
the electron energy distribution function.

With the Grotrian diagram at hand, it is to be noted that a full model describing the spectral lines
is fitted to all spectroscopic data. In contrast to simple line ratio methods for which only a subset
of the state populations is modelled. Consequently, as will be shown along this thesis, the present
spectroscopic approach facilitates the diverse energy dependences of the excitation processes as
implemented in the model for the determination of the electron kinetic.

2.4.1. Notation of the Excited States.

A convenient labelling of the excited states similar to Paschen’s notation is used throughout the
paper: The principal quantum number n and the orbital angular momentum l of the excited electron
are combined with an energy ordered index, which is one for the state with highest energy among
the states with identical n and l.

In the context of the CRM, an index is used for the atomic states taken into account. In the
present work, we chose 0 for the ground state, 1 to 30 for the excited states (increasing with
energy), and 31 for the ionized atom.
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2. Low Temperature Plasmas

Table 2.3.: Excited states of neon. The assignment between the physical (intermediate jK coupling) states
to the approximated LS coupling is based on the BSRM38 calculations.

Index Label Paschen’s Configuration Configuration Energy [eV]
notation in jK in LS (NIST37)

0 2p1 1s1 2p6 1S0 2p6 1S0 0

1 3s4 1s5 2p5(2P◦
3/2)3s 2[ 3

2 ]
◦,J = 2 2p53s 3P2 16.61907

2 3s3 1s4 2p5(2P◦
3/2)3s 2[ 3

2 ]
◦,J = 1 2p53s 3P1 16.67083

3 3s2 1s3 2p5(2P◦
1/2)3s 2[ 1

2 ]
◦,J = 0 2p53s 3P0 16.71538

4 3s1 1s2 2p5(2P◦
1/2)3s 2[ 1

2 ]
◦,J = 1 2p53s 1P1 16.84805

5 3p10 2p10 2p5(2P◦
3/2)3p 2[ 1

2 ],J = 1 2p53p 3S1 18.38162

6 3p9 2p9 2p5(2P◦
3/2)3p 2[ 5

2 ],J = 3 2p53p 3D3 18.55511

7 3p8 2p8 2p5(2P◦
3/2)3p 2[ 5

2 ],J = 2 2p53p 1D2 18.57583
8 3p7 2p7 2p5(2P◦

3/2)3p 2[ 3
2 ],J = 1 2p53p 1P1 18.61270

9 3p6 2p6 2p5(2P◦
3/2)3p 2[ 3

2 ],J = 2 2p53p 3P2 18.63679
10 3p5 2p5 2p5(2P◦

1/2)3p 2[ 3
2 ],J = 1 2p53p 3D1 18.69336

11 3p4 2p4 2p5(2P◦
1/2)3p 2[ 3

2 ],J = 2 2p53p 3D2 18.70407

12 3p3 2p3 2p5(2P◦
3/2)3p 2[ 5

2 ],J = 0 2p53p 1S0 18.71138
13 3p2 2p2 2p5(2P◦

1/2)3p 2[ 1
2 ],J = 1 2p53p 3P1 18.72638

14 3p1 2p1 2p5(2P◦
1/2)3p 2[ 1

2 ],J = 0 2p53p 3P0 18.96595
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3. Concepts of Probabilistic Data Analysis

The mathematical concepts that form the basis for statistical data analysis are briefly introduced
in the following chapter. The presentation of the ideas of plausible reasoning as the natural gener-
alization of deductive logic to the case of uncertain available information follows the introductory
books on the topic39,40. The book written by Sivia41 provides a good starting point for further
reading on the topic.

After introducing the general scope of probability theory and the plausibility interpretation of
probability, the implications of the basic equation for statistical inference, called Bayes theorem,
are discussed. The role of the principle of Maximum entropy as a tool to identify probability
distributions with minimal information content is described. Guidelines for the practical imple-
mentation of a probabilistic data analysis1 are given and the main tool for the numerical investi-
gation of the multi-dimensional probability density functions, namely the Monte Carlo method is
introduced. The application of the concepts introduced in the following chapter to the case of the
present data analysis of spectroscopic data is described in chapter 6.

3.1. Probability Theory

Probability theory is, in a general sense, the framework for computations involving quantities that
are subject to a sort of uncertainty (which will be specified) and which are called random variables

in the following. A (discrete) random variable θ cannot be assigned a single definite value but
instead has a set of n possible values θi, and a probability pi = p(θi) associated with every value,
that θ may equal θi. In the continuous case, when n → ∞ the θ is characterized by its probability

density function p(θ), where the probability of θ to lie in the differential interval {θ0,θ0 +dθ0} is
given by

Pr(θ0 < θ < θ0 +dθ0) = p(θ0)dθ0 (3.1)

Historically two ways have been developed of defining the term ’probability’ used here: Early
works on the topic, performed by Bernoulli, Bayes and Laplace in the context of the prediction
of orbits of celestial objects from uncertain observations at hand, are now regarded as the first
examples, for the use of probability theory as an extension of logic to cases of incomplete (i.e.
uncertain) information, where Aristotelian deductive reasoning is not possible40. In the Laplacian
interpretation, probability is regarded as the plausibility of the random variables to have a certain
value, e.g. the orbit of some celestial object to be of a certain magnitude, rather than another.
Based on this ideas Laplace was able to solve, for example, the ’inequality of Jupiter and Saturn’39,
which was an outstanding problem of science in the 18th century. Unfortunately, Laplace did not
formulate the unique requirement of the laws of probability calculus which can be derived from
the mere definition of the plausibility interpretation.

Alternatively, this can be easily accomplished when defining probability as the relative frequency

of the occurrence of an outcome of an infinitely often repeated random experiment. This is also
often called the frequentist’s definition of probability. Most of the work in the field of statistical
inference during the twentieth century was based on this school of thought40, because of its well
defined character. However, although setting the probabilistic approach on a well defined basis,

23



3. Concepts of Probabilistic Data Analysis

the frequentist’s point of view suffers from the fact, that it’s premise of an identically repeatable
experiment is often not applicable in practical inference problems.

In the 1940s and 50s of Polya, Cox and Jaynes showed that the sum- and product rules for
conditional probabilities can also be derived from a set of ’desiderata’ defining the plausibility
interpretation of probability. The term desideratum refers to the fact, that the assumptions taken
by Jaynes don’t assert anything to be true, but only state desirable goals for a theory of plausible
reasoning. The important point of this reinvention of the rules of probability calculus is the much
broader applicability of the theory.

In the present work this more general interpretation, which is often called the Bayesian interpre-
tation of probability, is adapted. It allows to extract the information from the spectroscopic data
and to make inference about the properties of the electron component, which dominantly deter-
mines the properties of the plasma. In this chapter the basic ideas of the Bayesian approach and its
most important methods for the field of data analysis will be discussed. The concept of plausible
reasoning will be introduced and the two important cases of parameter estimation and hypothesis
testing problems will be discussed. The different steps of the employed data analysis are outlined

3.1.1. Plausible Reasoning and Data Analysis

In the context of probability theory, the plausible reasoning means the consideration of the va-
lidity of a proposition about which only uncertain knowledge is available. In this sense, it is
a generalization of deductive (Aristotelian) kind of inference, which is often used, for example,
in mathematics, where the available knowledge is typically of definite axiomatic kind. Definite
knowledge is the limiting case of uncertain knowledge, when the uncertainty is diminished by
including more and more information and the conclusions of deductive logic must be re-obtained
from plausible reasoning in this limit.

A typical example of plausible reasoning is the estimation of model parameters from experi-
mental data. Some scientific theory might not be able to state the value of a numerical parameter
from first principles. Instead, the values of has to be extracted from observations of reality (Con-
sider for example the gravitational constant of Newtons law of gravity, or the mixing angles and
the phase of the Cabibbo-Kobayashi-Maskawa quark mixing matrix of the standard model of par-
ticle physics42). As experiments are generally subject to uncertainty, so are the extracted physical
parameters. The result of the experiment will be the plausibility of different values for the physical
constant. (Which will be encoded in a pdf for that constant) Formally the testing of an hypothe-
sis, i.e. computation the plausibility of a theory as whole turns out to be closely connected to the
parameter estimation problem. The vast majority of the issues in (plasma-) physical data analysis
fall in on of the categories of parameter estimation or hypothesis testing. For both classes of data
analysis problems the probability, which is to be obtained can be written down in the same way:

P(hypothesis|data) = P(data|hypothesis)× P(hypothesis)
P(data)

. (3.2)

This equation follows directly from the application of sum and product rule for conditional proba-
bilities and is usually called Bayes’ theorem. It relates the desired probability of the the hypothesis
(given the data) to something which is usually calculable, namely the expected outcome of the
experiment for a given hypothesis (P(data|hypothesis)) (called the likelihood). As equation (3.2)
is the basic equation for most problems of statistical inference, there are names established for its
terms:

• the resulting probability P(hypothesis|data) is called posterior,
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3.1. Probability Theory

• the statistical model of the data P(data|hypothesis) is called likelihood,

• the probability of the hypothesis P(hypothesis) regardless of the currently considered data
is called prior,

• and the residing term P(data) is called the evidence.

The two mentioned categories of data analysis problems differ in the kind of hypothesis, which is
considered. In the case of hypothesis testing the a qualitative hypothesis, similar to ’the electron

energy distribution function of this plasma can be described by a specified kinetic simulation’,
while in parameter estimation problems a collection of hypothesis of the form ’the unknown pa-

rameter θ is in the range θ0 + dθ0’ is considered. In the latter case the posterior is a continuous
pdf of the parameter θ or more generally of the vector of parameters ~θ . Equation (3.2) is then
written as

p(~θ |~D) = p(~D|~θ)× p(~θ)

p(~D)
, (3.3)

where ~D represent the sequence of all measured data, which are taken into account. Note, that
the evidence P(~D) is not a function of ~θ . Therefore it is defined uniquely by the normalization∫

P(~θ |~D)d~θ = Np of the posterior. In parameter estimation problems the validity of the model
is assumed and Np = 1. This is not the case for the comparison of different models, which is
done in hypothesis testing, as discussed below. Consequently, the evidence is often not computed
in parameter estimation problems. Only the form (location of the maximum and width) of the
posterior is of interest in that case.

3.1.2. Likelihood

The most effort in the actual implementation of equation (3.2) is the formulation of the likelihood.
The physical model for the experimental data, which the considered hypothesis is a part of, enters
the formalism here. It should be noted, that the likelihood can always be formulated, because if the
outcome of the experiment, expected on the grounds of the valid hypothesis, cannot be formulated,
the experiment is usually not suited to validate the hypothesis from the beginning. Often, the
likelihood of experimental data is composed of two ingredients: a deterministic, physical model
for the ’expected’ data ~Dsim(~θ) given the hypothesis, and the possible fluctuation of the actual
measured data, caused by the finite precision of a real-world experiment, which is called the error

statistics of the measurement. Moreover, it is quite frequently a good approximation to assume
independent normal distributed errors, for which the likelihood can be written down as:

p(~D|~θ) = 1
(2π)n/2 ∏n

i=1 σi

exp




−1

2

n

∑
i=1

(
Di −Dsim,i(~θ)

)2

σ2
i





(3.4)

The description of the error statistics of the data, inherently provides a measure to distinguish
structures, which are features of the physical model from mere statistical fluctuations.

Equation (3.3) can be regarded as an inversion of the physical model for the data: the mapping
from ~θ to ~D, which is given by the data model, is inverted to some sort of ’mapping’ which allows
to determine ~θ from the measured data. It is for this reason, that parameter estimation tasks are
also called inverse problems. For a successful inversion inversion, the likelihood has to provide an
unbiased and statistically correct description of the data. Systematic differences between model
and data have to be understood and incorporated in the model.
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3.1.3. Updating Plausibilities: Prior and Posterior

A necessary ingredient for the inversion of the likelihood into a pdf for the parameters of interest
~θ is the prior probability p(~θ). The prior represents the state of knowledge about θ independent
from the currently analyzed experiment. In this way, Bayes rule allows to combine ’new’ infor-
mation (encoded in the likelihood) with ’old’ information contained in the prior distribution. The
information given by the prior can itself be the result of a data analysis from a different (indepen-
dent) experiment, in this case the posterior of one analysis is used as prior for the other analysis.
The order in which the experiments are analyzed has no influence on the final result, just as the
analysis of a set of nd independent(!) data points can be equivalently performed using a single
combined likelihood, or by setting up nd separate likelihoods in n versions of Bayes rule to update
information step by step.

As a side note, the following idea is mentioned: When for a given pdf every piece of informa-
tion is factored out using Bayes theorem, what is eventually left as a prior in the last instance of
equation (3.3), is a pdf quantifying total ignorance about θ . The mathematical representation of
this pdf is not as trivial as writing down a constant p(~θ), what can be imagined when thinking
of the fact, that it is usually possible to find equivalent parameterizations of any given problem.
A flat prior pdf in one parameterization may not be flat in a different parameterization, which is
nevertheless able to describe the present problem. This leads to the obvious question, in which of
the possible parameterizations p(~θ) should be flat.This issue will be addressed briefly in 3.1.5. For
a practical proceeding it is assumed, that there is a way of expressing sufficient ignorance in the
(somehow flat) priors, that the result of the analysis will be dominated by the information included
in the likelihood.

It should be mentioned, that all information quantified by the terms in equation 3.2 implicitly
depends on the validity of the applied models and all underlying assumptions. This is sometimes
explicitly written down as an additional variable I, which all the pdfs (prior, posterior, likelihood
and evidence) are conditional on. By this, it is emphasized that probability theory delivers objective

results only in the sense, that the incorporation of specific information always leads to the same
result. Even subtle differences in the model assumptions will lead to different numerical results
for resulting posterior pdf.

In physical parameter estimation problems, the multi dimensional posterior, is often summarized
by only a few numbers, e.g. the most probable value of each parameter and its confidence region.
This description only works for uni-modal posteriors, i.e. for the case when the posterior has
only a single well-defined maximum and the correlations between the parameters are negligible.
When, for example, the posterior describes a state of inconsistent information, obtained by several
disagreeing measurements, it has a bi- or multi-modal shape and more care has to be taken in its
summary. In general, a summary of the posterior should only be carried out for the interpretation
of the final results, for successive uses as prior distribution it should be characterized as completely
as possible.

3.1.4. Marginalization

The following relation, which can be readily derived from the sum rule of probabilities, plays a
such prominent role in plausible reasoning, that it is also known as the marginalization rule:

P(~θ |~D) =
∫

P(~θ ,~η |~D)d~η . (3.5)
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Here, the parameters of the posterior P(~θ ,~η |~D) of some data analysis are divided in two classes:
the parameters of interest ~θ , and the set of parameters ~η , which are important for the modelling
of the data, but which are not of primary interest for the hypothesis under consideration∗. By the
application of rule (3.5) the plausibility (encoded in the pdf) of different values for ~θ is obtained,
regardless of the values of the components of ~η . A typical example, where (3.5) is useful, is the
treatment of calibration parameters describing the response of some experimental equipment.

Concerning the implementation of the likelihood there is no formal distinction between the two
kinds of parameters, the difference is purely given by the current interest in the parameters. When
the information about a component of ~η is very comprehensive the pdf describing this parameter
will be very peaked, approaching a Dirac-δ distribution in the limit of precise knowledge. In
that case the integral in (3.5) is obtained by just inserting the respective value for ηi, effectively
not treating the parameter probabilistically any more. Conversely, when the knowledge about a
calibration constant is very vague, the integration will involve a broad range of values ηi and the
influence to the parameters of interest will produce a broadened distributions for ~θ . This kind
of uncertainty propagation is able to take into account all interdependencies between the model
parameters and different kinds of prior knowledge about the components of ηi are able to be
treated, as will be described below.

The marginalization rule also describes the relation between parameter estimation and hypoth-
esis testing. The plausibility of a hypothesis to be valid given the experimental evidence is calcu-
lated by fully marginalizing its posterior as a function of the parameters: P(H|~D)=

∫
P(H(~θ)|~D)d~θ .

3.1.5. Entropy and the Maximum Entropy Principle

As introduced above, the plausibility interpretation of probability theory means that a pdf P(θ)
represents the available knowledge or information about a proposition under consideration. In
1948 it was shown by Shannon, that there exists a measure for the amount of information con-
tained in a discrete probability distribution: When a system is in one of n possible states, and our
knowledge about the system is encoded in n probabilities pi, each quantifying the plausibility of
the system being in state i, then the uncertainty of our knowledge is given by H(pi):

H(p1, . . . , pn) =−k
n

∑
i=1

pi log(pi) (3.6)

where k is an arbitrary constant, which allows to freely choose the base of the logarithm. The
information encoded in a set of pi is given by the difference between the entropy of the state with
greatest uncertainty H(pi =

1
n
) and H(pi). The functional form of H was derived by Shannon from

a set of assumptions, the most important of which is the assumption of consistency, requiring to
obtain the same value for H for different ways of combining the elements pi together43.

The basic idea of the maximum entropy (MaxEnt) principle is to use this measure of informa-
tion to find a set of probabilities which is consistent with a certain prior information and carries the
least amount of information. The prior information, which can be incorporated has to be testable

information40. This means that for every set of probabilities it must be possible to state whether
it is compatible with the testable information or not. By using the least informative of all possi-
ble sets of information, no additional information is introduced. The respective set is obtained,
by maximizing the entropy H subject to certain constraints of the form f (pi) = 0, given by the
available prior information. The property of not introducing additional information is obviously

∗These additional parameters are frequently called nuisance parameters.
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desirable, as the inference about the quantity of interest should only be based on the explicitly
stated information.

In physical parameter estimation problems, the quantities of interest are most of the time contin-
uous quantities. The generalization of (3.6) to the continuous case, sometimes called the Shannon-
Jaynes entropy, as discussed e.g. in Ref. (? ) is:

Hc(p(θ)) =−
∫

p(θ) ln
{

p(θ)

m(θ)

}
dθ (3.7)

The quantity m(θ), which can be interpreted as the state space density of the ~θ , ensures that the
entropy is invariant under parameter transformations θ → θ ′, because m and p transform in the
same way. Jaynes proposes to use invariance arguments to assign m(θ), if a convenient group of
transformations is present in the problem. By applying this idea to the case of translational and
scale invariance, the important cases of non-informative priors, given by the flat and the Jeffrey’s
prior? can be obtained. It can be seen here, that the determination of non-informative priors cannot
be separated from the formulation of the problem, i.e. the invariance properties of data model
and likelihood. Although in practical applications m(θ) is frequently assumed to be constant, its
general role is still a matter of ongoing research.

An interesting perspective in this context is discussed in Ref. (44) where the connection between
the maximum-entropy prior and the likelihood is made explicit by maximizing the entropy of the
posterior distribution:

P(~θ |~D) ∝ P(~D|~θ)P(~θ). (3.8)

The least informative posterior is obtained by varying the prior P(~θ). The entropy to be maximized
is then given by:

H =−
∫

d~Dd~θ P(~D|~θ)P(~θ) log
P(~D|~θ)P(~θ)
m(~D)g1/2(~θ)

, (3.9)

where the state space density now consists of the two terms g1/2(~θ) and m(~D). The density of the
parameters θ is set to the determinant g1/2(~θ) of the Fisher Rao metric of the likelihood:

gi j =
∫

d~DP(~D|~θ)∂ logP(~D|~θ)
∂θ i

∂ logP(~D|~θ)
∂θ j

. (3.10)

The state space density of the data m(~D) can not be specified without information about the phys-
ical system being investigated. In Ref. (44) it is argued, that when the often used approximation of
a Gaussian likelihood is applicable, a constant m(~D) is a reasonable choice, and the translational
invariant constant prior is obtained as a special case of an entropic prior.

Other recent works, go in the direction of unifying the principles of inference taking into account
testable information and observed data45,46 and thus revealing the Maximum Entropy principle and
Bayes rule as special cases of a more general approach.

3.1.6. Maximum Entropy Priors

Despite the mentioned conceptual discussions about the assignment of ignorance priors, in the
present analysis the practical approach was followed to set m(~θ) to a constant, in order to be able
to assign maximum entropy priors on the basis of the testable information. Technically the entropy
is maximized using the method of Lagrangian multipliers. The calculation is demonstrated for the
case of just the trivial constraint ∑M

i=1 pi = 1, leading to the following equation for the differential
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of the function to be maximized (Lagrangian multiplier λ ):

d

[
−

M

∑
i=1

pi ln(pi/mi)−λ

(
M

∑
i−1

pi −1

)]
= 0. (3.11)

By writing the differential as d = ∑i
∂

∂ pi
d on obtains:

M

∑
i=1

(− ln(pi/mi)−1−λ )dpi = 0,

which can only be fulfilled if all pi equal the mi multiplied by a constant value (given by the
Lagrangian multiplier):

pi = mie
−(1+λ ),

and in the case of constant mis the normalization of the pi leads to

pi = 1/M (3.12)

When generalizing this result to the continuous case M goes to infinity and the pi vanishes. This
can be circumvented by introducing a lower and upper bound a and b, leading to the normal-
ized uniform prior given in table 3.1. There also the other priors used in the present analysis are
summarized together with the underlying constraints.

Table 3.1.: Maximum Entropy distributions for different kind of testable Constraints

constraints Distribution

∫
p(θ)dθ = 1 Uniform p(θ) = 1

b−a

∫
p(θ)dθ = 1

Exponential p(θ |θ1) =
1
θ1

e−θ/θ1∫
θ p(θ)dθ = θ1

∫
p(θ)dθ = 1

Gaussian p(θ |θ1,θ2) =
1√

2πθ1
e−(θ−θ1)

2/2θ 2
2∫

(θ −θ1)
2 p(θ)dθ = θ 2

2

3.1.7. The Implementation of a Data Analysis

The practical implementation of a data analysis based on the ideas outlined above, can be broken
down to a list of tasks that have typically to be taken care of. The presentation of the current data
analysis problem also follows this list, compare also chapter 6.

Problem Statement Formulation of the considered proposition and implementation of a model
for the measured data.
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3. Concepts of Probabilistic Data Analysis

Likelihood Examination of the error statistics of the measurement, formulation of the likelihood
of the data.

Priors Consideration of the available knowledge about all parameters and numerical values used
in the forward model, selection of probabilistic parameters, assignment of priors.

Posterior Characterization of the Posterior: analytical marginalization, Monte Carlo Sampling.

Summary The quantities of interest have to be either condensed in a few numbers for human
inspection or comprehensively summarized for incorporation in further analysis.

3.1.8. Monte Carlo methods

The formal result of equation (3.3) is the multi-dimensional posterior pdf p(~θ |~D). It encodes all
information, which was included in the analysis by:

• the choice of the parameterization of the model,

• the prior pdfs for the model parameters,

• and the actual data.

The final (human) evaluation and interpretation of the result requires suitable characterizations of
the often high-dimensional posterior function. To obtain any summary of the posterior, it needs
to be evaluated at a number of points ~θi covering the domain of the posterior to some extend.
When the number of components of ~θ is as low as three or four, the characterization can be done
in an intuitive way, by scanning p(~θ |~D) on a predefined grid and summarizing the results by a
graphical representation. Quite often however, the data model is more complex and the number
of employed parameters is considerably greater. The immediate problem which arises is, that
the cost of an algorithm exploring the whole parameter space is proportional to its volume, i.e.
grows exponentially with dimension N of the parameter space: O(aN), where a is the number of
grid-points per dimension.

In Monte Carlo (MC) methods, the points ~θi at which the posterior is to be evaluated, called
samples, are chosen randomly†. The beneficial effect of this randomness is, that it makes the
convergence rate independent from the number of dimensions of the problem. This can be seen
for example, when comparing the error-estimate of a numerical integration of a N dimensional
function f using standard numerical (i.e. grid-based) and Monte Carlo integration: the error of the
integral σMC obtained by MC sampling is inversely proportional to the square root of the number
of function evaluations m. This square root m dependence on the number of samples is a general
property of Monte Carlo algorithms48:

σMC ∝
1

m0.5 . (3.13)

When trying to use standard numerical quadrature rules to obtain an N dimensional integral, the
integration has to be recursively decomposed into integrations with decreased dimension. For the
sake of simplicity, only the error of the last integration is considered here. For the usual quadrature
rules, there are analytical formulae giving an upper bound for the error of the integration as a
function of the number of the support points per dimension a. For the trapezoidal rule, for example,

†In allusion to games of chance, the term Monte Carlo was first used in the 1940s by physicists working on nuclear
weapon projects in the Los Alamos National Laboratory 47.
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3.1. Probability Theory

the error bound is proportional to 1/a2. By expressing this in terms of the number of overall
function evaluations m = aN the following expression is obtained:

σnum ∝
1

m2/N
. (3.14)

It can be seen from this heuristic argument, that for low dimensional problems (i.e. one or two
dimensional) standard numerical integration converges more rapidly. With increasing number of
parameters however, MC integration becomes more and more advantageous.

The human assessable representation of the posterior typically involves the computation of inte-
gral quantities. In general, the quantity to be inferred is a function of the model parameters f (~θ).
In the simplest case f may be just a component of the parameter vector, but frequently the quantity
of physical interest is not identical to a numerical convenient parameterization of the problem and
f (~θ) is a non-trivial function. If the data being analyzed allow to make an unambiguous statement
(i.e. the posterior is uni-modal), what is a desirable situation, then the result of the data analysis
can be summarized by giving the best fitting model and some measure for the uncertainty of the
fit. This can be achieved by computing expectation value and the variance of the function f (~θ)
whose pdf is given by the posterior‡:

〈 f 〉=
∫

f (~θ) ·P(~θ |~D)d~θ . (3.15)

σ2
f = 〈 f 2〉−〈 f 〉2 =

∫
f 2(~θ) ·P(~θ |~D)d~θ −〈 f 〉2. (3.16)

If there are more than one quantities of interest fi(~θ), the correlations between the fi may be
non-vanishing. They can be obtained in analogous way as mean and variance. As mentioned, the
description of the quantities of interest in terms of their expectation value and covariance matrix
is comprehensive for uni-modal posteriors and corresponds to a multi-dimensional Gaussian fit to
the posterior (also called Laplace approximation40).

If the posterior has a more complex structure, it is often helpful to consider graphical representa-
tions of (possibly multi-dimensional) distributions instead of mean and covariance of the quantities
of interest.

If the (multi-modal or high order correlated) structure of the posterior is spread out over more
parameters of interest than are graphically representable, its adequate interpretation may get te-
dious. A sensible utilization of such a posterior could be the combination with additional informa-
tion (e.g. from independent measurements, as used in the combined analysis of different plasma
diagnostics). In that can case, either a representation using multi dimensional histograms or a
combined sampling of the product of both likelihoods is conceivable.

In any case, the implementation of each of the above mentioned characterizations can be carried
out, if there is a a method available to draw samples ~θ i distributed according to the posterior

‡Relation (3.15) can be formally obtained, by considering the pdf P( f ) as the total marginal over the pdf for f and ~θ .
The emerging P( f |~θ) is given by the Dirac δ function because the value of f is known as the function f (~θ) of the
model parameters:

P( f ) =
∫

P( f ,~θ)d~θ

=
∫

P( f |~θ) ·P(~θ |~D)d~θ

=
∫

δ ( f − f (~θ)) ·P(~θ |~D)d~θ

〈 f 〉 =
∫

f ·P( f )d f

=
∫

f (~θ) ·P(~θ |~D)d~θ �

When the integration over f is carried out the δ function vanishes and f is replaced by f (~θ).
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3. Concepts of Probabilistic Data Analysis

p(~θ |~D). The distributions of the quantities of interest fi(~θ) can be obtained from the set of samples
{~θ i}m

i=1 by just calculating the fi for each sample and the expectation value 〈 f (~θ)〉 can be obtained
from

f̃ =
1
n

m

∑
i=1

f (~θ i), (3.17)

accordingly. (Multi-dimensional) distributions can be depicted in the form of histograms of the
quantities of interest fi.

The simplest way to obtain samples distributed according to the posterior P(~θ |~D) is the simple

sampling approach sketched above: A random number is drawn uniformly from the domain of
the posterior and weighted the value of the posterior P(~θi|~D). The problem here is, that a high
dimensional probability distribution P(~θ) is often concentrated in an extremely small region region
of its domain, called the typical set T , whose volume can be estimated using |T |=≃ 2H

SG(
~θ), where

HSG(~θ) is the Shannon-Gibbs entropy of P(~θ),

HSG(~θ) = ∑
~θ

log2
1

P(~θ)
. (3.18)

There are more sophisticated MC sampling algorithms, e.g. importance sampling and rejection

sampling (see e.g. Ref.48), which are designed to sample more efficiently from the typical set of the
posterior. Although these methods may be appropriate in problems of moderate complexity, their
general drawback is, that they make use of an approximative pdf, or an envelope pdf respectively,
that are hard to assign properly in high dimensional problems.

Markov Chain Monte Carlo Methods

In general48, it is tedious to effectively create independent samples from a high dimensional prob-
ability distribution. Instead, the undesired evaluation of the posterior outside the typical set can
be avoided, by starting from a point lying in the typical set and exploring P(~θ) using a random
walk like scanning procedure. The length scale of the random walk can be adapted to the size
of the typical set in each dimension. By this method, which is the basis for Markov chain based
MC algorithms, a sequence of states {~θ (t)} is generated, where each sample is generated from a
probability distribution, that depends on the previous state {~θ (t−1)}. It can be shown, that it is
possible (and actually even simple) to construct a Markov chain which has the property, that the
distribution of its samples converges to a designated stationary distribution P(~θ). It is important to
keep in mind, that the correlation of subsequent samples may make it necessary to run the chain for
a considerable time, before a number of effectively independent samples are generated. Moreover,
multi-modal posteriors, for which the typical set is split in different regions have to be treated with
special care, because the algorithm is unlikely to make transitions between distant modes. The
careful choice of the initial states is of special interest in this case. See e.g. Ref. (49–51), for a
comprehensive introduction into Markov chain Monte-Carlo methods)

A Markov chain is a discrete stochastic process, i.e. a sequence of random variables {~θ (t)},
which has the property that it can be generated from the conditional distribution of state ~θ (t+1)

given only its preceding state ~θ (t):
T (~θ (t+1)|~θ (t)). (3.19)

T is called the transitional kernel of the Markov chain. The generability condition from the transi-
tional kernel can be written as51:

P(~θ (t+1)|~θ (t),{~θ (i) : i = 0, . . . , t −1}) = T (~θ (t+1)|~θ (t)) (3.20)
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In the following, only time-homogeneous Markov chains are considered, where the transitional
kernels does not depend on t. It can be shown, that under quite general conditions the samples
generated from a Markov chain are distributed according to an invariant distribution, which is
called the stationary distribution π(~θ). As a special case, Markov chains, which satisfy the condi-
tion of detailed balance possess a stationary distribution and their sample will also converge to it
regardless of the choice of the initial state ~θ (t=0). The detailed balance condition is:

π(~θ (t))T (~θ (t+1)|~θ (t)) = π(~θ (t+1))T (~θ (t)|~θ (t+1)). (3.21)

This expression implies, that every possible state can be reached by the chain. The Metropolis
Hastings algorithm is an example for an algorithm satisfying condition (3.21). There exist also
Markov chains which don’t obey detailed balance, but nevertheless have a stationary distribution. It
can be shown, that a transitional kernel which is positive for all states is sufficient for the existence
of π(~θ). See e.g. Ref. (51) for a comprehensive discussion of different Markov chain Monte-Carlo
(MCMC) algorithms.

The Metropolis Hastings Algorithm

The idea of Markov chain based sampling was invented together with the first digital computers, at
times when programming computers was performed not even using punchcards, but with electronic
plugboards52. The first publication53 reporting results obtained using a MCMC (in the form,
now known as Metropolis algorithm) was printed 1953. Hastings54 generalized the Metropolis
algorithm to the form which is presented below, some 20 years later.

For a target distribution π(~θ), which can be computed up to a normalizing constant, the Metropolis-
Hastings algorithm yields a sequence of samples {~θ (t)}, whose distribution converges to the target
distribution. The basic principle of the algorithm is to generate a candidate for each successive
sample using a proposal distribution q(~θ (t+1)|~θ (t)) and accepting the candidate with a probability
given by the acceptance probability α(~θ (t+1)|~θ (t)). The acceptance probability is a functional of
the desired stationary distribution π(~θ) (Equation 3.23) This way, the sample candidates can be
drawn from a distribution which allows for an efficient numerical generation of random numbers.
When the candidate is rejected, the successive sample is given by the current sample, and a new
candidate is generated. The distribution π(~θ) has to be evaluated at each candidate point.

The transitional kernel corresponding to the algorithm reads:

T (~θ (t+1)|~θ (t)) = q(~θ (t+1)|~θ (t))α(~θ (t+1)|~θ (t)), (3.22)

where the acceptance probability is given by:

α(~θ (t+1)|~θ (t)) = min

{
1,

π(~θ (t)) ·q(~θ (t)|~θ (t+1))

π(~θ (t+1)) ·q(~θ (t+1)|~θ (t))

}
. (3.23)

The chosen proposal density does not influence the stationary distribution of the Markov chain.
The rate of convergence, however, can depend crucially on the combination of proposal and de-
sired target distribution. The implementation of a proposal distribution leading to rapid mixing of
the chain depends on craftsmanship and experimentation. Nevertheless, untuned canonical forms
of proposal distributions may perform well in some cases. It is often convenient to choose a pro-
posal distribution, which generates each component of {~θ (t)} independently, reducing the class of
proposal distributions to be considered to the one-dimensional case. Heavy tailed proposals, like
e.g. the Cauchy distribution, often improve the mixing rate in the presence of a structured target

33



3. Concepts of Probabilistic Data Analysis

density which is not perfectly unimodal. The width of the proposal distribution in each dimension
is usually adapted to the desired stationary distribution: A large step-width leads to a faster random
walk, but this applies only when the candidates are accepted, which gets improbable for a too large
step-width. As a matter of experience, good mixing is often obtained by adjusting the step-width
to the value, where roughly one third of the proposed candidates are accepted by the algorithm.

Convergence of Markov Chain Monte-Carlo

The inference from the serially correlated set of samples generated using a Markov chain Monte-
Carlo algorithm requires some care. If the number of computed iterations of the algorithm is
too small, the distribution of the samples may be grossly unrepresentative of the target target
distribution. Generally, the inference from correlated draws from a distribution is far less precise,
than from the same number of independent draws. The early iterations of the Monte-Carlo are still
characteristic of the starting approximation of the simulation, rather than the target distribution.
The samples of the so called burn-in phase can not be used for the characterization of the target
distribution. The length of the burn-in depends on the degree of serial correlation of the parameter.
Various methods to assess the convergence can be found in literature, see for example55,56 for
reviews of the topic.

In the present analysis, the autocorrelation of the time series of each element of the parameter
have been considered, as well as a method to assess the convergence of scalar estimators described
in50.

The autocorrelation quantifies the statistical dependence of the values of a time-dependent func-
tion at different points in time. It allows to assess the number of Monte-Carlo steps that are needed,
before an effectively independent sample is obtained. The autocorrelation Rk of a discrete time se-
ries {θ (t)} is given by the following expression:

Rk =
1

(n− k)Var(θ)
·

n

∑
t=1

(θ t −E(θ))(θ t+k −E(θ)), (3.24)

where Var(θ) is the variance and E(θ) the sample mean of the parameter. k is called the time-lag.
θ might be an element of the parameter vector or any scalar estimate deduced from the sampled
parameters. The autocorrelation of a time series obtained by MCMC can typically be described by
an exponentially decaying function of time-lag:

Rk ∼ e−κk (3.25)

Where κ is called the autocorrelation length. When equation (3.25) applies, the autocorrelation
length can be estimated from the samples of the time series and the autocorrelation can be charac-
terized by its decay length κ . See Appendix B, for the formulae that were used for the estimation
of the autocorrelation length by non-linear regression, in the present analysis.

The sampling can usually be regarded as converged, when the number of samples is large com-
pared to the autocorrelation length. The correlation lengths of the elements of the parameter vector
may differ strongly. κ allows a quick identification of parameters that may need to be monitored
more closely.

The authors of50 propose a convergence criterion that is applicable, when multiple Monte-Carlo
chains were run in parallel: The between- and within-sequence variance can be used to monitor the
convergence of a scalar estimand θ . The draws from J parallel sequences of length n are labeled as
θ (i j) (i = 1..n, j = 1..J). Then, the between-sequence variance B and the within-sequence variance

34



3.1. Probability Theory

W can be obtained using the following expressions:

B =
n

J−1

J

∑
j=1

(θ̄ (. j)− θ̄ (..))2, where θ̄ (. j) =
1
n

n

∑
i=1

θ (i j), θ̄ (..) =
1
J

J

∑
j−1

θ̄ (. j)

W =
1
J

J

∑
j=1

s2
j , where s2

j =
1

n−1

n

∑
i=1

(θ (i j)− θ̄ (. j))2.

The variance of θ distributed according to the stationary distribution π(~θ) of the Monte-Carlo
chain can be estimated using a weighted average of W and B:

V̂ar
+
(θ) =

n−1
n

W +
1
n

B.

Which overestimates the variance, assuming the starting values of the chain were appropriately
dispersed. At the same time, the within-sequence variance W should be an under-estimate of
the variance of θ , as the individual sequence may not have covered the whole typical set. The
convergence of the sampling is validated by computing the ratio of the both, which approaches
one if convergence is accomplished:

√
R̂ =

√
V̂ar

+
(θ)

W
. (3.26)
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4.1. Setup

The experimental setup of the spectroscopic measurement (Fig. 4.1) is simple and inexpensive. It
consists of a dc glow-discharge, a simple imaging optic and a miniature optical-fiber-spectrometer
observing the emitted light. The response of the spectrometer as a function of wavelength was
calibrated by replacing the discharge tube with a standard light source in an Ulbricht sphere.

The electric circuit used to operate the glow-discharge is shown in Fig. 4.1. The anode which
is connected to the positive pole of the high-voltage power supply lies on ground potential. The
ohmic resistor which is connected in series with the discharge is used to stabilize its negative
current-voltage characteristics. The current of the discharge is conveniently measured at the anode
side of the circuit which is at ground potential.

For measurements at several different spatial positions, the discharge tube was mounted on
a movable support with a millimeter scales in horizontal and vertical direction. This way, the
calibrated optical setup could be left in position, reducing the number of necessary calibrations of
the setup.

4.1.1. Optical Setup

The light from the positive column of the discharge was imaged onto the optical-fiber of the spec-
trometer, using a single plano-convex lens with a focal length of 15 cm. The opening angle of the
cone of the line of sight is much smaller than depicted in Fig. 4.1. An iris diaphragm is used to
adjust the amount of light for convenient detection by the spectrometer.

4.1.2. Spectrometer

The spectrometer that was used is a commercially available Czerny-Turner type spectrometer
produced by Ocean Optics57 which can be read out digitally. Of the two spectral channels for

fibre

imaging−lense

spectrometer

micro−

HVA

20k

Figure 4.1.: Experimental setup of the spectroscopic measurement.
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the ultraviolet wavelength-range (UV, 247..573nm) and visible and near infrared range (NIR,
475..1121nm) only the NIR channel was used for the measurement.

The slit width of 50 µm and the fixed grating with 600 lines/mm (UV: 1200 lines/mm) determine
the spectral resolution of roughly 2nm (UV: 1 nm). A cylindric convex lens is used to image
the entrance slit height of 600 µm onto the detector, which has got a height of 200 µm. The
detector of the UV channel is coated with a low-pass filter which has got a cutoff wavelength
that varies as a function of pixel number (wavelength). The filter allows for the suppression of
effects of second order radiation on all pixels. The low-pass filter coating on the NIR channel has
got a constant cutoff wavelength, which leads to a deterioration in the range of λ > 920nm by
additional radiation from second order of interference. The detectors of the spectrometer are two
rows of silicon-CCDs, each having 2048 Pixels with a size of 14× 200 µm2. The charges read
out of the pixels are digitized by a 1 MHz A/D converter with a dynamic range of 12 bit. The
mapping of wavelengths to pixel-numbers of each spectrometer channel is implemented using a
second order polynomial:

λi = λ0 +λ ′ · i+λ ′′ · i2, (4.1)

see table 4.1 for the approximate values of the used coefficients. The wavelength mapping is
obtained from the neon emission spectra considered in the present analysis by incorporating the
parameters of equation (4.1) in the probabilistic model (cf. 5.9 and 6.3.6).

Table 4.1.

λ0 [nm] λ ′ [nm] λ ′′ [nm]
UV 242.85 0.18365 −1.10 ·10−5

NIR 466.06 0.36625 −2.241 ·10−5

4.2. Calibration with the Standard Light Source

The response of the spectrometer as a function of wavelength was calibrated by replacing the
discharge tube (Fig. 4.1) with a standard light source in an Ulbricht sphere. The spectral radiance
of the standard light source is known from a reference measurement. In Fig. 4.2, the spectral
radiance of the standard source is shown together with the response of the spectrometer. The
light bulb in the standard source emits predominantly in the visible and near infrared region. The
intensity drops for wavelengths smaller than 350nm. This poses no problem, as the part of the
neon spectrum which is described by the plasma model is located between 550 and 900nm.

4.2.1. Uncertainty of the Spectral Measurement

The formulation of the probabilistic model, described in chapter 5), requires precise knowledge
about the reproducibility of the measured data. The error statistics of the spectral measurement
is given by the noise of the CCD chip, which consists of two contributions: the photon noise σph

and the readout noise σro,i. The photon noise is caused by the statistical incidence of photons at
the detector. It follows photon statistics and σph is proportional to the number of photo-electrons
generated in the CCD. The readout noise was assumed to be independent of the signal amplitude
and the same for all pixels. Consequently, the noise of the signal obtained by a CCD sensor

38



4.2. Calibration with the Standard Light Source

Wavelength [nm]
300 400 500 600 700 800

]
-1

 s
r

-4
S

p
e
c
tr

a
l 
R

a
d

ia
n

c
e
 [

W
 m

0

20

40

60

80

100

120

140

6
10×

[A
D

U
]

0

500

1000

1500

2000

2500

3000

Figure 4.2.: Calibration measurement for the response of the two spectrometer channels. The black curve
shows the spectral radiance of the standard source, as known from the reference measurement.
The red curves depict the response of the spectrometer (UV + NIR).

depends on the amplitude Di −Ddark,i in the following way? :

σ2
spec,i = Eγ · (Di −Ddark,i)+σ2

ro. (4.2)

The conversion factor Eγ is equal to the inverse number of photon electrons per ADU. Experimen-
tally the dependence of the variance σ2

spec,i on the signal amplitude was determined from repeated
measurements of the spectrum of the standard light source. The variance of each pixel of the spec-
trum of the standard light source was plotted against Di −Ddark,i The parameters of equation (4.2)
were fitted to the data in Fig. 4.3, with the following result:

Eγ ≈
1

28.5
, σ2

ro ≈ 5.72ADU2.

Eγ ≈
1

16.2
, σ2

ro ≈ 9.01ADU2.
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Figure 4.3.: Error statistics of the spectral measurement. The statistical fluctuation of the spectrometer is
obtained by repeated measurements of the spectrum of the standard light source. It is described
by counting statistics (Poisson distribution, σ2 ∝ I). The variance σ2

spec,i is obtained from 100
exposures and is shown as a function of the intensity measured in analog-to-digital units. The
straight line is fitted to data in the range from 0 to 2500 ADU.
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5. Data Model

The Data Model is a simulation ~Dsim(~Θ) of the experimental data for a given set of model param-
eters ~Θ. The forward model is the basis for the reconstruction of the EEDF, which is basically an
inversion of the forward model, resulting in (a set) of model parameters consistent with a given
measured spectrum ~D. The forward model on its own, is not of probabilistic nature. It is combined
with the errors statistics of the measurement in the likelihood, as described in 6.2, which consti-
tutes a probabilistic model of the data. In order to take advantage of the full information content
of the measured spectrum, the present forward model describes the raw data, i.e., the intensities of
the different spectrometer pixels, rather than deduced quantities such as line intensities.

5.1. Overview

The model ~Dsim(~Θ) for the spectroscopic data consists of a stationary collisional-radiative model
(CRM) revealing the population densities ni of excited states and ions in the discharge plasma and
a description of the spectroscopic measurement. The chain of the different elements of the forward
calculation can be summarized as follows:

fe(~Θ f ) →
CRM

ni

·Ai j h̄ω
4π
→

lifetime

εi j

∫
l.o.s. εi jdV

→
radiation transport

Li j

⊗s(λ )
→

line shape

Lλ →
calibrations

~Dsim . (5.1)

The EEDF fe(~Θ f ), which depends on the subset ~Θ f of the model parameters, enters the CRM. The
calculated population densities ni are multiplied by the inverse lifetime of the excited states Ai j

(Einstein coefficient) times the photon energy h̄ω and the inverse of the full solid angle (4π)−1

to obtain the locally emitted power εi j

[
W/(m3 · sr)

]
.The radiation has to pass through the plasma

before it leaves the discharge device. The apparent lifetime of the excited states is affected by
the transport of photons if the absorber density is high, e.g., for transitions to the ground state of
the atom30. Together with the integration along the line-of-sight (l.o.s.) of the spectrometer, the
description of this opacity results in the effective radiance Li j of each transition.

The line intensities given by the effective radiance have to be convoluted (⊗) with the line
shape s(λ ) to obtain the effective spectral radiance Lλ . The observed line shape is determined
by a convolution of the apparatus function with the natural line shape, which is determined by
broadening mechanism like Doppler- or impact broadening (cf. 2.2.1). For the present model
of the overview spectrometer, the line shape is dominated by the apparatus function, which was
obtained here from distinct lines in the spectrum as described in 5.8.

The modeling of the spectrometer output furthermore comprises the description of the response
per incident power of each pixel (intensity calibration, cf. 4.2) and the mapping of pixel numbers
onto wavelengths (wavelength calibration, cf. 5.9).
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5. Data Model

5.2. Collisional Radiative Model of the Neon Discharge

The population densities of the atomic states ni were described by a set of balance equations ac-
counting for all elementary processes populating or de-populating an atomic level i (equation 5.2).
Ions were treated as an additional state. With a few exceptions, the rates of the elementary pro-
cesses are proportional to the population density of another excited state (cf. 2.2.1). This was used
for the solution of the following system of coupled equations for the stationary case:

0 !
=

dni

dt
= ne

[
∑
k 6=i

(〈σ e
ki ve〉nk −〈σ e

ik ve〉ni)

]

︸ ︷︷ ︸
Electron (de-)excitation

+

[
∑
k>i

ΛkiAkink −∑
k<i

ΛikAikni

]

︸ ︷︷ ︸
Radiative transitions

. . .

+na

[
∑
k 6=i

〈σa
ki va〉nk −∑

k 6=i

〈σa
ik va〉ni

]

︸ ︷︷ ︸
Atom collisions

. . .

− ne 〈σ e
i∞ ve〉ni

︸ ︷︷ ︸
Electron impact ionization

− 〈σa
ii va〉n2

i

︸ ︷︷ ︸
Chemo-ionization

. . .

+ ne

(
βrad+βDE

)
n∞

︸ ︷︷ ︸
Recombination

− Γini

︸ ︷︷ ︸
Wall de-excitation

(5.2)

The rate coefficients of radiative transitions which are not optically thin (see also below) and the
rate coefficients for chemo-ionization were calculated by iteratively solving the linearized system
of equations.

Electron excitation and de-excitation. The transition rate is given by the rate coefficient ne〈σv〉=
ne

∫ ∞
0 σ(E)E1/2 fe(E)dE multiplied by the density of atoms in the initial state of the exci-

tation. Different parameterizations of the energy distribution fe(~Θ f ) are employed to de-
termine electron collision rates for the CRM. See also 6.3.2 for a description of the used
excitation-cross-sections.

Radiative transitions. For optically thin transitions, the transition rate is given by the Einstein
coefficient Aki. The escape factor 0<Λki ≤ 1 accounts for the radiation transport in optically
thick regimes. Its computation is described below. See also 6.3.2 for a description of the
used coefficients.

Atom collisions. Collisions of the excited atoms with neutral gas atoms lead to excitation transfer
between metastable and resonant states of neon, which have the lowest excitation energy
among the excited states. The calculation of the rate coefficient is analogous to the elec-
tron excitation but much simplified since the atoms are a Maxwellian ensemble at room
temperature. The rate coefficient for the respective transitions were taken from Ref. (58)

Electron impact ionization. The charge carrier balance is determined by ionization. Only singly
charged neon ions are taken into account. The cross-sections were taken from Ref. (59,60)

Chemo-ionization. The energy of two excited neon atoms is greater than the ionization energy.
Therefore collisions between excited atoms may lead to ionization of one of the atoms, while
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5.3. Spatial Dependence of the Plasma Model
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Figure 5.1.: The radial variation of the EEDF as obtained by a hybrid model13 (left) and the radial variation
of the 30 excited states considered in the CRM (right, see 2.4.1 for the notation), which was
obtained with the EEDF depicted on the left; r0 is the radius of the discharge tube. The red
dotted line is the radial variation of an effective states considered in Ref. (13), as shown in
Fig. 5.2. The profiles of the 27 states of the model, that have a very similar radial dependence
are not labelled, the color code for the states is the same as in Fig. ??. States 3s4 and 3s2 are
metastable.

the other atom returns to the ground state. The rate coefficient for the chemo-ionization of
two metastable atoms was taken from61.

Wall de-excitation. Excited atoms or ions coming into contact with the wall of the discharge tube
are de-excited to the ground state. The flux Γi was obtained by considering diffusion of the
excited atoms and ambipolar diffusion of the ions in the plasma.

5.3. Spatial Dependence of the Plasma Model

5.3.1. Coordinate System

The vessel of the glow discharge is cylindrically symmetric. The coordinate system used to de-
scribe the plasma is chosen accordingly: the z-axis is given by the axis of the discharge tube and
the whole system is azimuthally symmetric.

In order to model the line averaged spectroscopic measurement, the emissivity of the plasma
volume which is imaged onto the optical fiber, has to be integrated to obtain the radiance of the
plasma surface. As the line-of-sight of the spectrometer is chosen perpendicular to the discharge
axis, the axial extension of the imaged volume is small: 600 µm at the axis and 1.5mm at the walls
of the tube∗. Accordingly, the axial variation of plasma parameters can be neglected in the model.
Also, the axial resolution of axial scans is 1mm. The radial variation of the population densities
and the emissivity, however, has to be accounted for in the model, as the line-of-sight extends
over the whole radial range. In the present implementation, the radial variation is described using
predetermined, fixed radial profiles:

ni(r) = ni ·nr
i (r) (5.3)

∗Following from the magnification of the optics (which is 1 : 1), the diameter of the fiber (600µm) and the the double-
conical form of the volume, which leads to a broadening of 600 µm or 1000 µm depending on the diameter of the
discharge tube.
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Figure 5.2.: The radial variation of three of the five effective states considered in Ref. (13) (left). The
variation of the resonant 3s states is also shown in Fig. 5.1 for comparison. The integrated
population density I(r/r0) (equation 5.4) demonstrates the small fraction of light emitted from
the outer part of the discharge: less than 5% are emitted are r/r0 > 0.65.

The following considerations are the basis for the choice for the form of the radial profiles: In
the simplest case, under the assumption of diffusion dominated radial transport, the profile form is
given by a zeroth order Bessel Function (in cylindrical symmetry15).

The excitation profiles obtained by a 1-dimensional self-consistent kinetic model of the cylin-
drical glow discharge in neon13, however, show a somewhat different behavior. Uhrlandt13 obtains
radial profiles for five effective excited state densities. The metastable 3s4 and 3s2 states and the
resonant 3s3 and 3s1 states are each described by a combined state, and the ten elements of the 3p
multiplet are also treated as a combined state. The profiles of these states are shown in Fig. 5.2. In
order to obtain multiplet-resolved profiles, the radial variation of the EEDF given by Uhrlandt13 is
fed to the current collisional-radiative model. In Fig. 5.1 the radially resolved EEDF is shown, as
well as the resulting radial profiles for the 30 excited states considered in the present model. The
red, dashed curve shows the profile obtained by13 for the combined 3s3 and 3s1 state for compar-
ison. Note, that although not well visible in the plot, the slope of the multiplet-resolved profiles
vanishes for r = 0, as required for a continuously differentiable density profile.

The obtained multiplet resolved profiles and the profiles of Uhrlandt show a somewhat different
radial variation. On the other hand, the metastable (3s4 and 3s2) states show a broader profile
in both cases. In the multiplet resolved calculation, all states except the state 3p9 show a very
similar radial profile. They are not labelled in the plot, since the lines overlap partly. The only
state with a noticeable narrower profile is the state 3p9. This is consistent with the dependence
of the population density on the EEDF (cf. 7.1.5) depicted in Fig. ??. The state 3p9 shows also
a different behavior there, in that it gets depopulated by an increase of the EEDF at low energies.
In order to validate the robustness of the model against different choices of the radial profiles, the
reconstruction of the EEDF was performed for both sets of profiles shown in Fig. 5.1 and Fig. 5.2
(cf. 7.1.3).

5.3.2. Line Averaging of the EEDF

The spectroscopic measurement of the light emission from the plasma is averaged along the line-
of-sight of the spectrometer. As shown in Fig. 5.1 the EEDF is not constant as function of radius
(i.e. along the line of sight), but is shifted to lower energies by the radial electric field in front of
the glass tube. In the right part of Fig. 5.2, the integrated population density I, is shown for the
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5.4. Parameterizations of the EEDF

effective 3p state, which is obtained from the following expression:

I(r) =

∫ r
0 nr

i (r
′)dr′∫ r0

0 nr
i (r

′)dr′
. (5.4)

I(r) is proportional to the fraction of light emitted at radii smaller than r. It can observed, that
only 5% of the emitted light come from the outer part of the discharge (r/r0 > 0.65). Therefore,
the change of the EEDF close to the wall of the discharge only leads to a very small change of the
observed spectrum.

5.4. Parameterizations of the EEDF

The parameterization used to implement the EEDF in the reconstruction is a Maxwellian distribu-
tion multiplied by a correcting function :

FM(E) = 2

√
E

π(kTe)3 exp
{−E

kTe

}

︸ ︷︷ ︸
Maxwellian

×exp
{

fSpline(E)
}

︸ ︷︷ ︸
correction

. (5.5)

The correction allows for the description of EEDFs that deviate from Maxwellian distributions, as
expected from independent kinetic modeling13. The correction was implemented using splines of
different order: A linear spline is advantageous in that that it doesn’t tend to oscillate and overshoot
the data, while a cubic interpolation allows for an overall better description. The exponential of
the spline was taken to assure positivity of the EEDF.

Note, that the parameterization FM(E) is not normalized to unity. In principle, a normalized
implementation is easily possible:

F̃M(E) =
FM(E)∫ ∞

0 FM(E)dE
. (5.6)

In the forward model, the EEDF is always multiplied by the electron density. Using a normalized
parameterization of the EEDF allows an implementation of the product Ne · F̃M, where the numer-
ical parameter Ne is directly gives the electron density. Such a physically clear parameterization,
though, has an unfavorable influence onto the convergence of the Monte-Carlo sampling (cf. 7.1.4).
Better results are obtained by multiplying FM(E) by a rough estimate of the electron density and
using only the values of the correcting spline and the electron temperature as free parameters of
the model. In this case, the actual electron density corresponding to a set of parameters has to be
obtained by integration.

The number of knots used for the correcting spline influences the flexibility of the parameteri-
zation. Results for different numbers of knots are shown in 7.1.5.

5.5. Optical Depth of Resonance Transitions

As described in 2.2.1, resonance radiation may be re-absorbed by atoms in the final state of the
respective transition. The radiation transport influences the collisional radiative model by changing
the rates of several radiative decays and also affects the amount of light leaving the plasma and
reaching the spectrometer. The re-absorption of photons yields an apparent enhancement of the

45



5. Data Model

Table 5.1.: Symbols used in the formulae for the escape factors (equation (5.8) to 5.10)

Symbol Description
τν natural time of life of transition: 1/Aki

λ0 wavelength of emitted radiation
N0 neutral gas density
Nr reduced density Nr = N0λ 3

0
h radius of discharge tube

Hr reduced radius Hr =
h
λ0

aν0 Voigt parameter
ν0 line center frequency
c speed of light
kB Boltzmann’s constant
T gas temperature
M atomic mass
Pc probability of dephasing collision

gl/u statistical weight of lower/upper state

lifetime τi = (∑
j

Ai j)
−1 of the excited state, which can be quantified using the escape factor Λki:

A′
ki = Λki ·Aki, 0< Λki ≤ 1 (5.7)

Approximate models of the radiation transport in discharge tubes were developed in Ref. (30). Em-
pirical formulae are used to summarize the results of a large number of Monte-Carlo simulations
of radiation transport in cylindrical discharge tubes30. The formulae (equation (5.8) to 5.10) take
into account the geometrical dimensions of the discharge and the atomic data of the respective
transition. They were employed in the present model for transitions to the ground state:

(Atτν)dm =
1.575+

√
aν0

2.75 +
0.22ln1.3(1.0+2.75a

3/2
ν0 Z)

0.35+
√

aν0

1.575+
√

aν0
2.75 +Z

√
ln(1.0+ Z√

π
)

(5.8)

(Atτν)rcm =

(
Pcaν0N

3/4
r H

1/4
r

aν0N
3/4
r H

1/4
r +0.92

)0.15
0.196√

Hr

(5.9)

Λ =
√
(Atτν)2

dm +(Atτν)2
rcm. (5.10)

(The used symbols are summarized in table 5.1)

Voigt parameter and probability for a dephasing collision are obtained from the expressions
given below, the Voigt parameter in that form is valid only in the limit of low gas density:

aν0 =
1

4πν0τν

√
2kBT
Mc2

, Pc =

(
1+

65.71gl

N0λ 3
0 gu

)−1

. (5.11)
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5.6. Optical Depth of Transitions to Metastable States.

In table 5.2 typical values for the escape factors of transitions to the ground state are given, which
are obtained for a ground state density of 2.1 ·1022[m−3], corresponding to 89Pa.

Table 5.2.: Escape factors of transitions to the ground state

Initial State Escape Factor Λki

3s3 0.00044
3s1 0.00025
4s3 0.00070
4s3 0.00047
3d11 0.0011
3d7 0.00039
3d1 0.00095

5.6. Optical Depth of Transitions to Metastable States.
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Figure 5.3.: Escape factors of different transitions to states in the 3s multiplet. The black points with error
bar are extracted from line ratios in a measured spectrum, while the red lines are escape factors
obtained from equation (5.8) to (5.10) using effective densities as described in the text.

The next-to highest populated states of the neon atoms are states of the 3s multiplet, in particular
the metastable states 3s4 and 3s2 which have a negligible radiative decay rate† Their density is
sufficiently high to cause an optical depth of transitions to these states. The formulae (5.8) to
(5.10) used for the escape factors to the ground state are not directly applicable here, since the
absorber density is not spatially homogeneous. They can be used, however, to obtain lower limits

†Their de-population is caused by electron impact de-excitation, collisions of the metastables with the glass tube, and
collisional transfer to resonant states.
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5. Data Model

for the escape factors by inserting the radial maximum of the respective population density (The
escape factor is a monotonically increasing function of the population density). The resulting lower
limit is as low as 0.1 for some transitions, indicating the necessity of an incorporation of radiation
transport of these transitions.

In order to obtain escape factors for the radially varying population densities of the 3s states,
effective absorber densities were introduced. The population density of the states 3s4, 3s3, and 3s2

as obtained from the CRM is multiplied with a correction factor, which is fitted to the measured
spectra in the inversion procedure. It can be expected, that the fitted correction factors roughly
reflect the ratio between average and maximum density of the radial profiles, and this is indeed the
case. In table 5.3 typical escape factors to states in the 3s multiplet are summarized.

In Fig. 5.3 an independent way to obtain some of the escape factors of the transitions to the
3s multiplet is summarized: Transitions to the least populated of the 3s state are approximately
optically thin. This fact can be used to obtain the population densities of states in the 3p multiplet
that have a transition to 3s1 from line intensities in a measured spectrum. From the population
intensities, obtained this way, and the intensities of lines to other states in the 3s multiplet, escape
factors can be extracted. Escape factors extracted from a measured spectrum in this way are shown
together with escape factors obtained using equation (5.8) to (5.10) with three effective densities
for the 3s states. Although the quantitative agreement is not perfect, it can be seen:

1. That the escape factors of several of the shown transitions deviate significantly from one.

2. The overall behavior of the fitted and computed escape factors is similar.

For two transitions, the fitted escape factors are slightly greater than one, indicating an under-
estimation of the population density from the line to 3s1. The error bars of the escape factors of the
3p7 lines are fitted with a great error bar, because the line of the transition 3p7 →3s1 has a strong
overlap with the strong 3p10 →3s4 - line.

In conclusion, Fig. 5.3 gives a strong indication, that the description of the radiation transport of
transitions to 3s states using the escape factor approximation of Ref. (30) with effective densities
is appropriate.

Table 5.3.: Escape factors for transitions to the 3si states. The escape factors are omitted for spectral lines,
which have a negligible intensity and can not be found in NIST37

Escape Factors Λki 3s4 3s3 3s2

3p10 0.51 0.98 0.97
3p9 0.2 − −
3p8 0.61 0.88 −
3p7 0.92 0.94 0.85
3p6 0.41 0.99 −
3p5 0.98 1 0.69
3p4 0.81 0.96 −
3p3 − 0.97 −
3p2 0.89 1 0.85
3p1 − 1 −
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5.7. Line-of-Sight Integration.

5.7. Line-of-Sight Integration.

The contribution Li j of the transition j → i to the overall radiance of the plasma surface‡ has to be
obtained by an integration of the local emissivity εi j(s,r⊥) of that transition along the line-of-sight
(l.o.s.):

Li j =
∫

ds
1

A⊥(s)

∫
dA⊥ εi j(s,r⊥), (5.12)

in which A⊥(s) is the area perpendicular to the line-of-sight of the plasma volume, which is imaged
onto the optical fiber. A⊥(s) depends on the position s along the l.o.s. and is computed taking into
account the area of the optical fiber, the opening angle of the optics, and the magnification of the
imaging optics. Equation (5.12) can be regarded as the average of εi j over the area A⊥(s), which is
integrated with respect to s. In Fig. 5.4 the imaged volumes of different lines-of-sight are shown.
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Figure 5.4.: and I(x,y)

For each l.o.s. a number of rays covering the angular range, which is imaged onto the optical
fiber is shown. The diffraction in the glass of the plasma tube is taken into account (the employed
formulae are given in Appendix C). It can be seen, that for l.o.s. which are close to the upper tube
wall, the shape of the emitting plasma volume is changed.

Because the direction of the line-of-sight is chosen perpendicular to axis of the glass-cylinder,
the change of shape of the emitting volume appears only in the x-y-plane. Consequently, the
area A⊥ has got an elliptical shape.

By writing down equation (5.12) in the Cartesian coordinates used in Fig. 5.4 the expression:

Li j =
∫

dxdydz
εi j(
√

x2 + y2)

A⊥(x,y)
(5.13)

is obtained. Because of the assumption of axial homogeneity along the emitting volume (cf. 5.3)
and the line-of-sight being perpendicular to the z-axis, the integrand in equation (5.13) has no

‡The wavelength dependence is obtained by convolution with the transfer function as described in 5.8.
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explicit z-dependence and the integration along the z-axis can be done analytically:

Li j =
∫

dxdy

∫ Ra
Rb

√
R2

b−y′2

0
dz

εi j(
√

x2 + y2)

A⊥

=
∫

dxdy
Ra

Rb

√
R2

b − y′2
εi j(
√

x2 + y2)

A⊥︸ ︷︷ ︸
=I(x,y)

. (5.14)

Here, y′ is the distance of the point in the x-y-plane, where the integrand is computed, to the
center of the line-of-sight (cf. Fig. C.2). The elliptical A⊥ is characterized by the major and minor
radius Ra and Rb. The quantities A⊥, y′, Ra, and Rb all depend on x and y. The expressions used
for their computation are given in Appendix C.

The integrand I(x,y) of equation (5.14) is shown in Fig. 5.4 (right part). The integration is
performed using a Gaussian quadrature in two dimensions (as described e.g. in Ref. (? )).

5.8. Apparatus Function

The effective spectral radiance Lλ (λ ) as introduced in equation (5.1) can be regarded as the inten-
sity distribution of the light after passing the dispersing grating of the spectrometer. It is obtained
by convolving the actual spectral radiance of the plasma Lplasma(λ ) with the apparatus function sa.
The difference between Lplasma(λ ) and Lλ (λ ) is, that the former reflects the physical distribution
of the emitted light as a function of the wavelength, while the latter is determined by the response
of the employed spectrometer. The convolution with the apparatus function reads:

Lλ (λ ) =
∫

Lplasma(λ
′)sa(λ −λ ′)dλ ′. (5.15)

Since the width of the apparatus function is large compared to the line broadening effects in the
plasma§, the natural broadening may be neglected and the line shape is given by the mere apparatus
function s = sa. In the present model, the effective spectral radiance was obtained by summing up
the radiance of each transition Li j multiplied by the line shape:

Lλ (λ ) = ∑
i j

Li js(λ −λi j), (5.16)

where λi j is the wavelength of the light emitted by the respective transition.

Determination of the Apparatus function In first approximation, the apparatus function of a
spectrometer using a grating as its dispersive element can be described by a Gaussian function (cf.
Fig. 5.7). The deviations from a Gaussian apparatus function are shown in Fig. 5.6. Although the
apparatus function looks similar to a Gaussian, the deviation is quite significant when expresses in
units of the statistical error of the spectral measurement.

In order to model the form of the function with higher precision, splines were used which were
fitted to measured line profiles. For this purpose, well-separated spectral lines at different wave-
lengths were shifted and rescaled, and a smoothing spline was fitted to all points of the superim-
posed lines. As there are not enough well separated lines in the neon spectrum, additional spectra

§Typical line widths in a low pressure discharge plasma are O(10)pm, mainly determined by Doppler-broadening 29,
the resolution of the spectrometer in the range of visible light is ∆Λ ≃ 1nm.
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5.8. Apparatus Function
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Figure 5.5.: Spectral lines (red lines) used to determine the apparatus function of the spectrometer. The
spectra were obtained from discharges in neon, helium and krypton (top to bottom). The lines
in the krypton spectrum, marked with dashed lines are used for the determination of apparatus
function at high wavelengths.
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Figure 5.6.: The residuals between different measured spectral lines and a Gaussian apparatus function is
shown as function of the position relative to the line center λ −λ ′ in units of standard devia-
tions. Although the deviations from a Gaussian are small on an absolute scale, the residuals
are large because of the small statistical error of the spectral measurement.

from discharges in krypton and helium were used for the determination of the apparatus functions.
As discussed in 7.1.1, the consistence of measured and modelled spectrum is not perfect at higher
wavelength (λ >∼ 750nm). Because the distribution of the residuals indicated a variation of the ap-
paratus function for high wavelengths, two different splines were used for the apparatus function
at the different wavelength regimes. In Fig. 5.5 the spectra used for the determination of the appa-
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5. Data Model

ratus functions are shown and the employed lines are indicated. The dashed lines in the krypton
spectrum were used for the fit of second apparatus function at high wavelengths.
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Figure 5.7.: The apparatus functions used at high (top) and low (bottom) wavelengths. For each apparatus
function(left plot), the smoothing spline obtained by shifting and scaling different lines (red,
see text) is shown with the assigned error band (blue) and the data points from the different

lines. The right plots shows the residuals (s(λi −λ ′)−Ds,i)/
√

σ2
s (λi −λ ′)+σ2

s,i, (where λi

is the position of the ith measurement of the apparatus function Ds,i (see also text)). The error
bar of the residuals depicts the contribution of the uncertainty σ2

s,i of the spectral measurement,
which is rescaled by the combined error in the denominator of the residuals in order to match
the units of the ordinate.

An error σs(λ −λ ′) was determined from the residuals of the smoothing spline fit. It quantifies
the variation of the apparatus function for the different lines in the spectrum. (cf. 6.3, for the in-
corporation of this uncertainty in the analysis.) In order to obtain the uncertainty of the transfer
function from the uncertain measured spectra, a probabilistic analysis was performed. The resid-
uals of five adjacent data points Ds,i, i = 1..5 from the rescaled spectral lines were considered at
a time, in order to estimate the uncertainty at the position of the middle point. Later, a smoothing
spline is fitted to the obtained uncertainty as a function of λ −λ ′.

The estimation of the uncertainty from each five adjacent data points uses the hierarchical
model50 summarized in Fig. 5.8. The position λ − λ ′ is omitted in the following for the sake
of brevity. As the five data points may come from five different spectral lines, they are based on
slightly different (unknown) apparatus functions si (as mentioned λ − λ ′ is fixed, here), which
are assumed to be described by a normal distribution with mean s and standard deviation σs,i.
The mean of the normal distribution is given by the smoothing spline , while σs,i is the sought
variation of the transfer function. Because of the (known, Gaussian) uncertainty of the spectral
measurements σs,i, the data points Ds,i obey an additional scattering around the si. As described in
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5.9. Calibration of the Spectrometer.

s ± σs

ւ ↓ . . . ց

s1 s1 . . . s5 ≡~s
yσs,1

yσs,2 . . .
yσs,5

Ds,1 Ds,2 . . . Ds,5 ≡ ~Ds

Figure 5.8.: The hierarchical model of the measurement of the apparatus function at a fixed λ − λ ′: The
apparatus function of different spectral lines varies with the unknown standard deviation σs.
The different apparatus functions si are measured with the uncertainty σs,i, determined by the
error statistics of the spectrometer.

Appendix A, a marginal probability distribution (cf. chapter 3) for the hyper-parameters s and σs

can be obtained in closed form:

p(s,σs|~Ds) =
1

(2π)n/2

n

∏
i=1





1√
σ2

s +σ2
s,i

exp

(
−s2 − s2

i −2sDs,i

2(σ2
s,i +σ2

s )

)
 . (5.17)

By maximizing¶ p(s,σs|~Ds) for the given s with respect to σs, an estimator for the uncertainty
of the apparatus function is obtained. In Fig. 5.7 the two resulting transfer functions are shown
together with their respective error band. The residuals of the apparatus function are shown as a
function of the wavelength position on the right of Fig. 5.7, and for the first apparatus function
(low-wavelengths) their distribution is also shown as a histogram (cf. Fig. 5.9). It can be seen,
that the distribution is symmetrically centered around zero for all wavelength, and the correct
assignment of σs as a function of wavelength position is reflected in the distribution of the residuals
having a variation of approximately one.

5.9. Calibration of the Spectrometer.

The description of the response of the CCD chip has to take into account the dark current Ddark,i

and calibration factor Ci for each pixel. The mapping of pixel numbers to wavelengths was imple-
mented using a second-order polynomial:

Dsim,i =Ci ·Lλ (λi)+Ddark,i; λi = λ0 +λ ′i+λ ′′i2. (5.18)

The output of the used spectrometer Dsim,i for each pixel i has a dynamic range of 12 bit and is
expressed in analog-to-digital units (ADU).

The fluctuation of the dark current and the readout noise σro,i were determined by repeated
measurements without light incidence. The parameters of the wavelength mapping λ0,λ

′,λ ′′ were
fitted to the data together with parameters of the EEDF.

¶The maximum was found using an implementation ? of Brent’s algorithm, the algorithm is described e.g. in Ref. ( ? ).
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Figure 5.9.: Left: A histogram of the residuals of the apparatus function at low wavelengths (shown as a
function of the wavelength position in the top right of Fig. 5.7) is shown together with a fit
by a normal distribution (The uncertainty of number of entries is assumed to be described by
Poisson statistics). The fitted normal distribution has mean value of 0.15±0.13 and a standard
deviation of 0.98±0.15.

The calibration factor was determined using a standard light source. The response of the CCD
pixels si, when exposed to the spectral radiance Ls(λi) of the standard light source, was measured
and Ci was computed:

Ci =
T

Ts

(si −Ddark,i)

Ls(λi)
. (5.19)

Here T and Ts are the exposure times of the spectral measurement of the plasma and the standard
light source. As the calibration factor is the result of a measurement, it is also subject to statisti-
cal uncertainty with the standard deviation σC,i. Assuming independent and Gaussian-distributed
noise of the spectral measurement, the uncertainty of Ci can be estimated using Gaussian error
propagation:

σC,i =
T

TsLs(λi)
· σspec,i. (5.20)

Here σspec,i is the rms-variance of the spectral measurement of the standard light source (see also
next section).
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6. Analysis of Spectroscopic Data

In this chapter, the elements of the implementation of data analysis procedure are described. The
data analysis was performed according to the integrated data analysis procedure as given in 6.2.

6.1. Problem Statement

Goal of the analysis is the reconstruction of the electron energy distribution function, which is
most consistent with the measured spectroscopic data. A full forward model was specified in
equation (5.1), mapping the EEDF fe with onto a simulation of the simulated data ~Dsim.

6.2. Likelihood

The likelihood P(~D|~Θ) states the probability to obtain the measured data ~D given the parameter set
~Θ. It represents the statistical model of the measurement. The likelihood of each pixel Di can be
obtained from the value of the model Dsim,i and the distribution of the statistical error of this pixel.
In concordance with the principle of Maximum Entropy (cf. chapter 3), a Gaussian likelihood is
appropriate when the estimates for the data value and its uncertainty are known. In that case, the
likelihood of the data is given by:

P(~D|~Θ) =
1

∏i

√
2πσ2

i

exp

{
−1

2 ∑
i

(Di −Dsim,i)
2

σ2
eff,i

}
. (6.1)

Effective Width of the Likelihood σeff,i. The uncertainty of the apparatus function σs(λ −λ ′),
which is most important for a proper description of the data, (cf. 5.8) and of the relative inten-
sity calibration σC,i (cf. 5.9) were taken into account by using an effective width in the Gaussian
likelihood:

σ2
eff,i = σ2

spec,i +σ2
C,i +∑

jk

L2
jkσ2

f (λi −λ jk). (6.2)

This formulation is equivalent to the introduction of additional model parameters with Gaussian
priors and subsequent marginalization, as derived in Ref. (? ).

6.3. Priors

For all parameters treated in a probabilistic way, the prior pdfs P(~Θ) have to be specified. This
means that the available knowledge about the respective parameter is quantified without taking
into account the experimental data,

Generally speaking, there are two kinds of parameters that have to be described probabilistically:
First, the parameters of interest, which are inferred from the data and are to be determined in the
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6. Analysis of Spectroscopic Data

inversion procedure. Second, parameters which we are not interested in, but whose values are not
known precisely. In table 6.1 the parameters of the forward model and the assigned priors are
summarized. The choice of the prior distributions is discussed in the following paragraphs.

Table 6.1.: Summary of the parameters ~Θ used in the forward model. Parameters, for which no prior is
stated, are not treated probabilistically The Gaussian priors of the line shape and the intensity
calibration of each pixel are taken into account by the effective width of the likelihood (see text).

Symbol Parameter Description Remarks, Prior
~Θ f Parameters of the EEDF Flat prior
Ne Electron density Uniform prior
σi j Scale of electron impact excitation cross sections Gaussian prior
Ai j Einstein coefficients Gaussian prior
Dm Diffusion coefficient of metastables -
DI Ambipolar diffusion coefficient of Ions -
Λi j Escape factors (EF) of transitions to ground state -

C3s4/3s2 EF of transitions to the metastable levels Flat prior for eff. densities
pNe Gas pressure -
TNe Gas temperature -
r Diameter of the discharge tube -

nDuran Refractive index of glass -
d Thickness of glass -

n5si,4di Populations of unmodeled atomic levels Exponential prior
n3si,3p,3d,.. Radial profiles of the excited state densities Gaussian prior

s(λ ) Line shape Gaussian prior, analytic
λ0, λ ′, λ ′′ Wavelength calibration Uniform priors

Ci Intensity calibration Gaussian prior, analytic
Cscale Scale of intensity calibration Gaussian prior

6.3.1. Parameters of interest

For the parameters we are interested in no additional information was included in the analysis and
flat prior distribution were employed. The parameterization of the EEDF is given in equation (5.5).
Beneath the parameters of the equation (5.5), which are the electron temperature and the values of
the spline nodes, also the electron density was extracted from the spectral data and a flat prior was
used for Ne.

6.3.2. Atomic Data

For the electron excitation cross sections and Einstein coefficients, a dataset from semi-relativistic
B-spline Breit-Pauli R-Matrix (BSRM) calculations was used. Details of these calculations can be
found in Refs. (38,62). Briefly, they are based on a close-coupling description of e−Ne collisions,
including the lowest (in energy) 31 target states. Using term-dependent, and hence non-orthogonal
orbital sets, which were individually optimized for each target state of interest, allowed for a highly
accurate target description with a relatively small number of configurations in the configuration-
interaction expansion. The above data were chosen, since they represent a complete, and internally
consistent, dataset for all transitions of interest.
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6.3. Priors

Data for oscillator strengths from the same BSRM model were combined with those from the
atomic line database NIST37. Where data from NIST are available, a weighted average of the
Einstein coefficients was computed using the uncertainties stated by NIST and the ones described
below. The cross sections for ionization of neon in the ground and excited states were taken from
Ref. (59) and Ref. (60).

The uncertainties of the electron-impact excitation cross sections were incorporated using a
single, energy-independent scale parameter for each cross section. This is a reasonable choice,
since in BSRM calculations the energy dependence of the cross sections is known to be more
reliable than the absolute scale63. The use of a single scale parameter also allowed for an efficient
implementation in the model.

A log-normal distribution64 was used as prior for the scale parameters. Its pdf is given by:

Glog(x|µ̃, σ̃) =
e−(lnx−µ̃)2/(2σ̃2)

xσ̃
√

2π
; (6.3)

µ = eµ̃+σ̃2/2; σrms = (eσ̃2 −1)e2µ̃+σ̃2

with an expectation value µ and a rms-variance σrms. The relative width (σrms/µ) used is listed
in table 6.2. The numbers were chosen according to details of the BSRM calculations and the
available independent experimental validations of the cross sections (see Refs.38,62,67? ).

Table 6.2.: Uncertainties of the excitation cross sections.

final state σrms/µ of log-normal distribution
(relative error)

2p53s J = 1 10%
2p53s J = 2 20%
2p53p 40%
2p54s 60%
2p53d 60%

The uncertainty of the Einstein coefficients Ai j was assessed by considering the results of the
BSRM calculations in the length and the velocity form of the electric dipole operator. Since
both should, in principle, yield the same result, the difference was used as an estimate for the
uncertainty65. Figure 6.1 shows the relative difference between the results in the two forms of the
dipole operator as a function of the absolute value of the Einstein coefficient. For small Ai j, the
calculations are expected to be less accurate compared to stronger transitions. Consequently, the
relative width of the prior distribution σrms/µ in Fig. 6.1 was chosen depending on the value of
Ai j. It is taken as large as the biggest relative difference for a certain value of Ai j, but never smaller
than 10%. Where both numbers were available, a weighted average of the Einstein coefficients
from the BSRM calculations and the NIST database37 was computed.

6.3.3. Escape Factors to Metastable States

The effective densities of the metastable states (1s5 and 1s3) were implemented by means of cor-
rection factors C3s4/3s2 to the densities obtained by the collisional-radiative model (cf. 5.6). These
correction factors have to be smaller than unity, since the maximum of the population density
is located in the center of the discharge, for which the CRM was calculated. A uniform prior
distribution between 0<C3s4/3s2 < 1 was used for the factors.
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Figure 6.1.: Absolute value of the relative difference 2|Ai j,(v)−Ai j,(l)|/(Ai j,(v)+Ai j,(l)) between the BSRM
results for the Einstein coefficients in the length and velocity form of the dipole operator plotted
as a function of the absolute value of the Einstein coefficient. The straight line depicts the rms-
width of the prior distribution as a function of the absolute value of the coefficient (see text).

6.3.4. Population Densities of Unmodeled Levels

In the spectral range described by the forward model, there are a few lines originating from excited
states, for which no cross-section data is available. In order to complete the forward model in
these areas, the population densities of these states (4di, 5si) were introduced as parameters of the
forward model. The population densities are expected to be somewhat lower than the lower-lying
states that are described by the CRM. In concordance with the MaxEnt principle41, exponential
distributions were used as priors. The expectation value of the respective density was estimated
using a Boltzmann factor for an electron temperature of 4 eV.

6.3.5. Prior Distributions of the Radial Profile Integrals

An assumption about the radial profiles of the excited states populations is necessary for the line
of sight integration. In order to account for the uncertainty of this assumption scale factors were
introduced for the radial profiles. A log-normal prior distribution with expectation value of 1 and a
rms-variance of 0.1 was used. The assignment of the rms-variance was based on the variation of the
integral of the radial profiles for profiles taken directly from13 compared to the multiplet-resolved
computation described above.

6.3.6. Priors of the Wavelength Calibration

The wavelength calibration is well determined by the data. Hence the posterior for λ , λ ′, and λ ′′

is strongly dominated by the likelihood. Uniform prior distributions were used for the parameters
of the calibration.

6.3.7. Priors of the Absolute Intensity Calibration

In addition to the uncertainty of the calibration factors that is caused by the finite precision of the
calibration measurement (cf. 5.9), there is an uncertainty in the (wavelength-integrated) radiance
of the standard light source. The uncertainty of the calibration measurement of each pixel was
incorporated in the effective width of the Gaussian likelihood (equation 6.2). The uncertainty
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of the radiance, which is specified by the supplier of the standard light source (Labsphere Inc.,
http:\\www.labsphere.com), was taken into account by a scale parameter for the spectral
radiance of the standard light source. A log-normal prior distribution with an expectation value of
1 and a rms-variance of 0.05 was used as prior.

6.3.8. Priors of the Apparatus Function

As described in 5.8, the apparatus function extracted from measured spectra is subject to un-
certainty. This uncertainty was accounted for by the effective width of the Gaussian likelihood
described above. The description with an effective likelihood is equivalent to the introduction of
additional parameters with Gaussian prior distributions and a subsequent marginalization? .

6.4. Focusing: Marginal Posterior Probability Distributions

The characterization of the posterior (equation 3.2), i.e. the numerical computation of estimators
for the parameters of interest of the high dimensional pdf, is performed using a Markov chain
Monte-Carlo (MCMC) algorithm, (cf 3.1.8).

In short, a Markov chain is a sequence of random variables {~Θ1, ~Θ2, . . .} where the next state
~Θt+1 is sampled from a distribution P(~Θt+1|~Θt), called the transition kernel, which only depends
on the current state of the chain ~Θt . A time-homogeneous Markov chain whose transition kernel
does not depend on t, will converge to a unique stationary distribution φ . When an arbitrary
starting state ~Θ0 was chosen, the chain will take a number of steps before it converges to the
stationary distribution. A Markov chain with a selectable desired stationary distribution, can be
constructed e.g. using the Metropolis-Hastings algorithm. The transition kernel of the Metropolis-
Hastings algorithm consists of a proposal distribution from which a sample is drawn and accepted
with a certain probability depending on the desired φ of the chain. The dependece of the algorithm
on the previous state arises because φ is evaluated at ~Θt and ~Θt+1.

In the present case the desired stationary distribution is the posterior pdf (equation 3.2), whose
numerical implementation is based on the likelihood and the priors described above. A Cauchy
distribution for each element of the parameter vector ~Θ is used as proposal distribution (single-
component Metropolis-Hastings algorithm). In a so called burn-in phase the width of the proposal
distributions is adjusted in a way, that a fraction of roughly 0.35 of the drawn proposal samples are
accepted during the Metropolis-Hastings algorithm. As a matter of experience this acceptance rate
allows a good convergence of the chain. During the burn-in the chain also departs from the initial
state of the chain, thus getting rid of the influence of the initial values of the inversion procedure.

The numerical computations were performed on a linux cluster. On each CPU a chain of the
length of O(104) samples was computed. A burn-in of several thousands of samples was used in
each chain to adjust the width of the proposal distributions. The samples of the burn-in were not
used for the characterization of the posterior.

The set of samples {~Θ1, ~Θ2, . . . ,~Θn} obtained this way was used for the estimation of the
parameters of interest. The possibility to formulate estimators for quantities derived from the
actual model parameters was employed to depict the reconstructed EEDF fE(~Θ) at a given energy
E. The expectation value for fE was extracted from the MC samples in the following way:

〈
fE(~Θ)

〉
=
∫

fE(~Θ)P(~Θ|~D)d~Θ ≃ 1
n

n

∑
i

fE(~Θi). (6.4)
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Its variance is given by:

Var
(

fE(~Θ)
)
=
〈

f 2
E(~Θ)

〉
−
〈

fE(~Θ)
〉2

≃ 1
n

n

∑
i

f 2
E(~Θi)−

(
1
n

n

∑
i

fE(~Θi)

)2

. (6.5)

In the plots of the results section, which are showing the reconstructed EEDF, fE is shown as
given in equation (5.5) and multiplied by the electron density Ne. The parameters of interest that
are depicted in the plots are accordingly: Ne, Te and the values of the spline nodes of equation (5.5).
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7. Results

In the previous chapters a detailed probabilistic model of the emission spectroscopic diagnostic
of a neon dc glow discharge was presented. The model describes the spectroscopic measurement
on the neon discharge depending on a number of input quantities, such as the electron energy
distribution in the plasma, the atomic data and the properties of the spectroscopic setup. Many of
these quantities are subject to uncertainty and are incorporated in the model in a probabilistic way
(cf. chapter 6). Instead of assigning a definite numerical value to these parameters, probability
distribution functions are used to specify ranges of possible values together with a measure of the
plausibility of each value. This applies equally to parameters who are approximately known, like
the atomic data and to parameters which are to be determined completely from the spectroscopic
data, like the parameters of the EEDF. By connecting the probabilistic model with experimental
data, additional information is acquired and is quantified in form of a refined set of probability
distributions for the model parameters (cf. 3.1.1). The result of the probabilistic analysis has to
be of probabilistic nature, as the conclusions drawn from the uncertain information entering the
analysis have also to be uncertain.

Accordingly, the results presented in the following chapter have the form of probability distri-
butions for different model parameters, cf. 3.1.8 for a description of methods for the representation
of probability distribution functions. Where suitable, estimators for the best fit values of the pa-
rameters (or deduced quantities) and their respective uncertainties are stated. The presentation of
the results is divided into two major parts:

• First, the validity of the probabilistic model is demonstrated, as the correctness of the in-
ferred information crucially depends on the quality of the model.

• In a second part, the results that could be inferred from the spectroscopic data are presented:
the EEDF at different discharge conditions is reconstructed and the employed atomic data is
validated, indicating the importance of continuum coupling corrections in the derivation of
certain cross-sections and confirming the correctness of a number of previously unmeasured
Einstein coefficients.

All probability distributions that are shown below are obtained using Monte-Carlo sampling, un-
less otherwise stated.

7.1. Validation of the Data Analysis Procedure

In general, the validity of the conclusions inferred from a probabilistic analysis depends on the
physically correctness of the model. Though there is no rigorous way of proving the correctness,
there are a number of indications that can be considered: The model has to deliver a statistically
correct, unbiased description of the measured data, which is reflected by a distribution of the
residuals that is consistent with the assumed error statistics of the measurement. Note, that with
increasing number of uncertain model parameters an unbiased description of the data gets more
and more achievable, while not guaranteeing the correct physical interpretation of the model pa-
rameters. This has to be assessed independently, and the dependency of the inferred information
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7. Results

on the validity of the physical picture is something the probabilistic approach has in common with
a standard (non-probabilistic) data analysis.

On the more technical side, the accurate implementation, the reliability, and also the potential
of the inversion procedure in terms of significance of the inferred quantities, can be examined by
reconstructing ’synthetic’ data: The forward model is used to obtain simulated data for a given
set of model parameters. Then the inversion procedure is applied to the obtained data and if
the reconstruction works correctly, the model parameters used to generate the data have to be
reobtained and the attainable precision of the reconstruction will be reflected in the uncertainty of
the probability distributions of the reconstructed parameters.

This part of the chapter is structured in the following way: First, the statistically correct de-
scription of the spectral data is demonstrated. Then the successful reconstruction of simulated,
’synthetic’ spectral data is shown. The convergence of the Monte-Carlo sampling, which turns out
to be an issue, is discussed. Then the physical correctness of the model is considered by investigat-
ing the influence of different assumptions on a number of approximations which are employed in
the model. It will be shown, that in particular the consistent identification of the effect of radiation
transport for transitions to some of the 3s levels, in simulated and in measured spectral data is an
indication for the quality of the model.
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Figure 7.1.: Result of the model of the discharge in neon and the spectroscopic measurement. The three
rows together show the emission spectrum from 550 nm to 900 nm. The intensity is shown on
a logarithmic scale allowing to depict also the less intense lines. The red area is the result of the
model and its uncertainty, the black points with error bars show the measured spectrum. The
blue dashed curve shows the difference between model and measurement in units of standard
deviations σ .
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Figure 7.2.: Distribution of the residuals between forward model and measurement (cf. Fig. 7.1). The
Gaussian which was fitted to the residuals has a mean of 0.07±0.07 and a sigma of 1.17±0.05
(error of mean and sigma as stated by the fitting algorithm).

7.1.1. Result of the Forward Model

In Fig. 7.1, the result of the forward model is shown together with a measurement. Every feature
of the emission spectrum between 550nm and 900nm is contained in the model: around 60 spec-
tral lines, which can be distinguished by inspecting Fig. 7.1 and contributions from roughly 70
additional weaker lines are taken into account. The high detail of the model is possible due to the
extensive set of atomic structure and collision data available from the BSRM calculations38.

The red area depicts the uncertainty of the forward model, which is primarily caused by the
uncertainty of apparatus function (cf. 5.8), as well as the uncertainty of the intensity calibration
(cf. 6.3). The error shown for the measurement is the statistical error (cf. 4.2.1). It is generally
small, since the exposure time of the spectrometer can be chosen sufficiently long for the mea-
surement of a steady state of the plasma. The statistical error of the spectroscopic measurement is
only important for pixels with very low signal intensity. Otherwise, the uncertainty of the transfer
function is the dominant error.

The only significant differences between model and measurement are at 645nm and around
840nm, where at some pixels the measured spectral radiance is higher than the simulated one.
These small deviations are suspected to be caused by imperfections of the spectrometer-device and
are not considered further, because of the little number of concerned pixels. In Fig. 7.2 the distri-
bution of the residuals between model and measurements is shown in units of standard deviations
of the respective pixel. The distribution is very close to a normal distribution with variance one
and mean zero, which would reflect a perfect description of the data and its uncertainty. Keeping
in mind, that the modelled spectroscopic data has a dynamic range of three orders of magnitude,
and that the uncertainty of model and data at this point consists only of contributions, that could be
physically motivated, this is a strong indication of the consistency and quality of the data model.

In table 7.1 typical population densities of the excited states considered in the forward model
are given for the purpose of documentation.

7.1.2. Reconstruction of Simulated Spectral Data

The correct technical implementation, the reliability and the potential of the inversion procedure
are examined by reconstructing ’synthetic’ spectral data: The forward function is used to obtain a
simulated spectrum for a given set of model parameters. Then this spectrum is inverted using the
present data analysis procedure. If the reconstruction works correctly, the model parameters used
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Table 7.1.: Population densities of the excited states of neon atoms considered in the forward model. The
number are obtained for a typical discharge situation (p = 89Pa, I = 10 mA, r0 = 1.5cm)

state population
density [m−3]

2p1 2.14871·1022

3s4 2.75806·1017

3s3 3.07219·1016

3s2 4.44034·1016

3s1 6.7653·1015

state population
density [m−3]

3p10 8.23057·1012

3p9 5.15322·1013

3p8 5.28536·1012

3p7 2.54865·1012

3p6 7.03938·1012

3p5 2.59925·1012

3p4 3.21508·1012

3p3 7.48251·1011

3p2 2.16638·1012

3p1 2.02695·1012

4s4 2.90417·1012

4s3 1.75412·1012

4s2 4.48691·1011

4s1 1.65642·1012

state population
density [m−3]

3d12 9.81717·1010

3d11 4.3609·1011

3d10 8.16153·1011

3d9 3.66689·1011

3d8 3.99229·1011

3d7 8.34077·1011

3d6 2.85986·1011

3d5 5.78695·1011

3d4 2.69743·1011

3d3 2.13643·1011

3d2 2.47991·1011

3d1 3.63426·1011

to generate the data have to be reobtained and the attainable precision of the reconstruction will be
reflected in the uncertainty of the probability distributions of the reconstructed parameters.

In Fig. 7.3, the result of a reconstruction of ’synthetic’ data is shown. The potential of the
reconstruction procedure is demonstrated: Non-thermal features of the EEDF are significantly
reobtained by the inversion. This demonstrates the general feasibility of the method to detect
non-thermal features of the EEDF.

The color coded histograms show the inferred probability distribution of the EEDF at the respec-
tive energy. They are obtained from the Monte-Carlo sampling by creating histograms of the EEDF
of each Monte-Carlo sample as described in 3.1.8, equations (3.15) to (3.17). These distributions
depict the values of the EEDFs, that are compatible with the spectral data being reconstructed and
allow for the assignment of an error band to the reconstructed EEDF.

The ’synthetic’ data whose reconstruction is shown in Fig. 7.3 were generated and reconstructed
using the parameterization of the EEDF given by equation (5.5), where a spline of 0th order was
used (linear interpolation). The positions of the knots of the spline on the energy axis are indicated
in Fig. 7.3 by the dashed vertical lines. The value of the spline knots, used for the generation of
the ’synthetic’ data, were assigned to reproduce the form of the EEDF from kinetic modelling13.
The form of the EEDF shows a distinct non-thermal behavior, as evident by comparison with the
Maxwellian distribution in Fig. 7.3.

It can be observed, that for energies below 5 eV only an upper limit for the electron population
can be extracted from the data. The distribution of the allowed values is flat. The reason for
this inconclusiveness of the spectroscopic data are the vanishing electron (de-)excitation cross-
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Figure 7.3.: Reconstruction of the EEDF from simulated data. The EEDF used to simulate the data is shown
together with the result of the reconstruction. The ordinate depicts the number of electrons per
energy interval per volume on a logarithmic scale. The black solid curves show the EEDF used
to create a simulated spectrum, while the red curve with error bars shows the expectation value
and variance of the result of the reconstruction (see also text). The black dotted curve shows
a Maxwellian distribution for comparison. The dotted vertical lines indicate the positions of
the knots of the spline of the EEDF. The color coded histogram in the background shows the
marginal probability distribution as obtained by the Monte-Carlo sampling (see also text).

sections. As will be discussed in 7.1.5 electrons with an energy below roughly 5eV have negligible
impact on the rate coefficients and no influence on the plasma model, accordingly.

A similar behavior can be observed at energies greater than 25eV. At this energy, the electron
population decreases below roughly 1/500th of the population at the maximum of the EEDF, cor-
responding to a number of 1011 electrons per m3eV. This value appears to be the lower limit for
the electron population to result in a significant contribution to the emission spectrum and is in-
dependent from energy, for energies higher than the threshold for excitation of 3p states from the
ground state.

The red error band in Fig. 7.3 is obtained by computing the mean and variance of the color coded
histograms, where the bins of the ordinate are weighted by the logarithm of the EEDF instead of
the EEDF itself. The logarithm was used, since the marginal distributions tend to show a flat shape
in the logarithm of the EEDF, which can be reasonably described by mean and variance in contrast
to the strongly asymmetric shape on a linear scale. In any case, the summary of the marginal
distributions by mean and variance only works well in the energy region, where the EEDF is well
constrained by the spectral data, otherwise, the full information is only contained in the complete
distributions.

Validation of Atomic Data

The objective of the present analysis is not only the reconstruction of the EEDF, whose correct
inversion from simulated data is shown above, but also the validation of the atomic data used to
model the spectrum. Therefore, the correct inversion and the information content of the spectral
data is also studied with respect to the remaining model parameters.
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Figure 7.4.: Marginal distribution of all model parameters in units of the prior knowledge. Each row shows
one marginal distribution, see table 7.2 for the names of the indexed parameters. The marginal
distributions are shifted by the expectation of value of their respective prior distribution and the
abscissa axis of each marginal distribution was rescaled by the variance of the prior distribution
(see also text). The confidence intervals, which are shown, are obtained from the 0.16, median
and the 0.84 quantile of the rescaled distribution. A distribution which is centered around zero
and has a confidence interval from -1 to 1 corresponds to a parameter for which no information
could be inferred from the data.
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Table 7.2.: Meaning of the indices in Fig. 7.4.

Label Parameter
0 Scale factor: Uncertainty of absolute intensity scale.
1 Electron temperature of the Gaussian in equation (5.5)

2-9 Value of the spline in equation (5.5) at different energies.
10-12 Effective densities of the 3s4, 3s3 and 3s2 states for the calculation of optical

depth, cf. 5.6
13-24 Densities of the 4d1 .. 4d12 states, which are not described by the collisional-

radiative model
25-28 Densities of the 5s1 .. 5s4 states, which are not described by the collisional-

radiative model
29-31 Parameters of the 2nd-order polynomial describing the wavelength calibration

In contrast to the model parameters associated with the EEDF, for which a state of ignorance
is assumed apart from the information extracted from the measured data, the atomic data has to
be known to a certain precision for the analysis. This state of knowledge, which is based on the
structure calculation of the BSRM approach38 (cf. 6.3) is combined with the information obtained
from the spectral data. This means, that based on the probability distributions representing the
information of the BSRM calculations which are called priors in the following, the incorporation
of the information extracted from the measured data with the help of the probabilistic model allows
to assign a refined set of distributions, which are called posterior distributions. Figure 7.4 shows a
comparison of the marginal probability distributions of all parameters with and without taking into
account the information obtainable from the (simulated) spectral data. The difference between the
both is exactly the information contained in the likelihood of the spectral measurement, which is
to be assessed here.

In order to visualize this difference, each posterior is shifted by the ’true’ value of the parameter
and is rescaled by the inverse uncertainty of the prior knowledge. Since the data we are considering
here were simulated, the ’true’ value of each underlying parameter is known. The shift of the
distribution allows to verify an unbiased reconstruction of the model parameters, which is reflected
by the shifted posterior being centered around zero. Similarly, the rescaling by the inverse width
of the prior uncertainty allows to evaluate the amount of information that can be gathered from
the analysis of the spectral data for each parameter: A confidence interval from -1 to 1 of the
rescaled posterior shows that nothing about this parameter can be learned from the data, while a
smaller width reflects the potential of the reconstruction concerning this parameter. The confidence
interval, depicted by the black error bar in each row of Fig. 7.4 is obtained by computing the 0.16
and 0.84 quantile of the respective distribution.

Discussion The parameters shown in Fig. 7.4 are divided in three groups: First, the parameters
labeled by indices, see table 7.2, which are the parameters of interest describing the EEDF and
uncertain quantities needed for the description of the spectroscopic measurement. The other two
groups consist of parameters accounting for the uncertainty of the atomic data: the Einstein coeffi-
cients (second group) and scale factors quantifying the uncertainty of the excitation cross sections
(third group). The parameters accounting for the uncertainty of the atomic data are labeled by
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the respective initial and final state of the transitions, see also Appendix E for the notation of the
excited states of neon.

In the first group of parameters, several marginal posterior distributions can be found, that are
very narrow compared to their prior distributions. These are the parameters of the EEDF (index
1..9) for which broad prior distributions are used, in order to incorporate no additional information
and the parameters of the wavelength calibration (index 29..31), which are very well determined
by the data. The rescaled posteriors of parameters for which flat priors are used are not expected
to be located around zero, as the ’true’ value of these parameters is not the expectation value of the
prior.

For the scale factor accounting for the uncertainty intensity calibration (index 0), no information
can be reobtained from the simulated data, as can be seen by the width of the posterior distribution
which is close to unity. The large estimated autocorrelation length of κ ≈ 1332 samples, however,
indicates a strong interaction with other model parameters, which is a sign for the importance this
parameter for the inference about these parameters.

The parameters with index 10..12 are the effective densities used for description of the opacity
of the plasma for photons from transitions to the 3s states. The priors of these parameters are
uniform distributions from 0 to 1 and the rescaled posterior is not expected to be centered at zero,
accordingly. The opacity of transitions to the metastable states 3s4 and 3s2 can be reconstructed
from the data∗, while the effective density of the resonant 3s3 is badly determined. This can be
attributed to the smallness of the effect in case of the 3s3 state.

The population of the excited states in the 4d- and the 5s-multiplets are described by parameters
13..28. The priors used for these parameters are exponential distributions with an expectation value
of 5 ·109 (4d) and 1 ·1010 (5s). See table 7.1 for the population of the excited states described by
the collisional-radiative model. The populations of the 4d- and 5s-states are not well determined
by the data. The apparent relative narrowness of the posterior distributions is due to the uncertain
prior distributions, again, since the standard deviation of the exponential distribution is equal to its
expectation value.
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Figure 7.5.: Joint marginal posterior distribution of two Einstein coefficients with the same initial state
(3p4) as obtained from the Monte-Carlo sampling.

∗The simulated data were generated using a value of 0.43 for the effective densities, which is the ratio between average
and peak density of a Bessel function of the first kind.
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The reconstruction of the Einstein coefficients from the ’synthetic’ data allows to assess the
potential of the analysis of the spectroscopic data concerning their validation. By identifying
marginal posterior distributions which are not equal to their respective prior distributions, the Ein-
stein coefficients can be recognized, which can be validated by the analysis. It is found that about
most coefficients belonging to transitions with an initial state in the 3p-multiplet and also about a
part of the transitions with an initial state in the 3d-multiplet information can be gained from the
analysis. The width of the posterior distributions is in the region of half the width of the respective
prior distribution or greater. This means, that the additional information gained from the analysis
of the spectroscopic data only allows a moderate improvement of the precision of each individual
Einstein coefficient. On the other hand, even a slight narrowing of the posterior shows, that the
information gained from the data (as encoded in the likelihood), has a comparable or larger preci-
sion than the employed prior information. In this case, the analysis of measured spectra may serve
as validation of previously unmeasured Einstein coefficients†. In contrast to the excitation cross-
sections whose absolute value can be validated, for the Einstein coefficients only the consistency
of the data set can be verified. The reason for this is, that the Einstein coefficients do not determine
the total number of photons which are emitted from the plasma. Every excited atom has to decay
back to the ground state and emits a photon independently of the precise life time of the excited
state. The values of the individual Einstein coefficients only determine the branching ratios among
different possible transitions. This is reflected in a strong correlation of the posterior for the Ein-
stein coefficients belonging to transitions with the same initial state. In Fig. 7.5, an example for the
joined marginal distribution of Einstein coefficient for the 3p4 →3s4 and the 3p4 →3s1 transition
is shown.
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Figure 7.6.: Joint marginal posterior distribution of the scale factors for the excitation of the 3d11 level
from ground and the 3s4 metastable state as obtained from the Monte-Carlo sampling (left).
The marginal posterior of the sum of both scale factors (right) shows a smaller width, than the
individual marginal distributions.

The uncertainties of the excitation cross-sections used for the collisional-radiative model are
implemented by means of a scale factor for each cross-section (cf. 6.3). As for the Einstein co-
efficients, a marginal posterior which is not identical to the used prior proofs the significance of

†Some of the Einstein coefficients are only available from theory 38, and are not published in NIST 37 because no
experimental validation is available, up to now.
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the data concerning the respective scale factor‡. In contrast to the Einstein coefficients, the spec-
troscopic data is sensitive to the absolute value of the excitation cross sections in most cases. For
the excitation of some levels, however, the spectroscopic data are not able to resolve the excitation
from ground state and the metastable 3s4 state well. In these cases, the joint marginal posterior
shows a distinct anti-correlation, as exemplified in Fig. 7.6.

7.1.3. Robustness of Reconstruction Against Different Model-Assumptions

It was demonstrated above (cf. 7.1.1), that the forward model allows a consistent description of
measured spectra and that the inversion of ’synthetic’ data works successfully. In the present
section, the physical correctness of the model is assessed by investigating the influence of different
assumptions on approximations which are employed in the model.

To achieve this, the ’synthetic’ data which were generated using the forward model in its phys-
ically most reasonable configuration as described in chapter 5, is reconstructed using different,
slightly-changed configurations of the forward model. The result of each reconstruction is summa-
rized by confidence intervals in units of the prior information for each parameter. See also 7.1.2,
above, for a description of this graphical representation. In the figures of this section, only the
marginal distributions of the Einstein coefficients of transitions from the 3p multiplet are shown.
Distributions for the whole set of parameters are given in Appendix D.

In Fig. 7.7, the influence of different model assumptions on the reconstruction of ’synthetic’
data is shown. The model configurations obtained by a variation of different assumptions, are as
follows (the keywords are referring to the labels in Fig. 7.7):

standard The model configuration which was decided to be physically most plausible, is referred
to as standard configuration. It was used to generate the ’synthetic’ data, as well as for the
reconstruction of the measured spectra, if not otherwise stated. In the standard configuration,
the radial profiles are taken from Uhrlandt13, as described in 5.3 and the optical depth of
transitions to the 3s-multiplet is accounted for (cf. 5.6).

radial profiles As discussed in section 5.3, the radial profiles available from Uhrlandt13, are only
available for seven effective, multiplet-combined excited states. Multiplet-resolved pro-
files were obtained by using the EEDF at different radial positions, also available from
Uhrlandt13, as input for the collisional-radiative model of the present analysis. The over-
all shape of the multiplet-resolved profiles shows some deviations from the effective profiles
of Uhrlandt (cf. 5.3). The latter were used for the standard configuration, since they are the
result of a detailed radially resolved description of the positive column plasma. In order
to study the sensitivity of the reconstruction, a configuration of the forward model using
multiplet-resolved profiles is considered.

22 knots The flexibility of the parameterization of the EEDF, i.e. the number of knots of the
spline in equation (5.5), influences the uncertainty band of the EEDF as function of energy
(cf. 7.1.5). A configuration with an EEDF having 22 spline knots is used to examine the
influence of a very flexible parameterization on the uncertainty of the reconstruction of the
model parameters associated with the atomic data.

‡As an outlook, the use of broader, uninformative priors, subsequently for each element of the atomic data set, would
allow a closer investigation of the information content of the data for parameters, which can not be validated with
the current approach.
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Figure 7.7.: Influence of different model assumptions on the reconstruction of ’synthetic’ data. In each
row of the plot, the marginal posterior distributions of one Einstein coefficient (abscissa) are
summarized. The rows are labelled by the final and initial state of the corresponding transition,
cf. Appendix E. On left, the influence of different radial profiles of the densities of excited
states (red), the influence of a parameterization of the EEDF with a large number of spline
knots (green) and the influence of a different apparatus function (blue) are compared to the
standard configuration (black). On the right, the effect of the negligence of the optical depth
for photons emitted in transitions with a final state in the 3s-multiplet (red) is compared to the
standard configuration used to generate the data (black). See Appendix D, for the marginal
distributions of the whole parameter set. The numbers at the right side, are the absolute values
of the Einstein coefficients. The dominantly depopulating transition of each initial state is
marked with two circles (◦◦), while Einstein coefficients which are larger than one fifth of the
dominantly depopulating are marked by one circle (◦).

transfer The apparatus function sa determines the line shape of measured spectral lines, because
the experimental resolution is much coarser than the natural line width. The apparatus func-
tion is obtained from measured spectra (cf. 5.8) and subject to uncertainty. The precise
shape of sa is of particular importance in regions of the spectrum with overlapping lines.
For the ’transfer’-configuration, a apparatus function is used that was extracted from a dif-
ferent spectrum, than the one used for the generation of the ’synthetic’ data. The difference
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between the two representations of the apparatus function, however, is merely given by the
reproducibility of the apparatus function when extracted from different measured spectra.

no 3s optical depth The last configuration being considered, is obtained by neglecting the opti-
cal depth of transitions with a final state in the 3s multiplet. The escape factors of these
transitions, as derived in in 5.6, are not incorporated in the model and the influence on the
reconstruction is examined.

In the left part of Fig. 7.7, the influence of the different radial profiles, the parameterization of the
EEDF with high flexibility, and the variation of the apparatus function are shown in comparison
with the standard configuration. The effect of the optical depth of the transitions with final states
in the 3p-multiplet are shown separately in the right part of the figure.

The influence of the three first mentioned model variations is not significant. The obtained con-
fidence intervals are with a few exceptions compatible with the ’true’ values of the parameters used
to generate the ’synthetic’ data. This is an indication for the robustness of the reconstruction against
the underlying assumptions. This is still true, when considering the whole set of marginal distri-
butions shown in Appendix D. In particular, the flexibility of the parameterization of the EEDF
(cf.7.1.5), which is determined by the number of spline knots in equation (5.5), does not influence
the reconstruction of the model parameters used for the description of the Einstein coefficients
and excitation cross-sections. The greatest sensitivity can be observed with respect to the precise
modelling of the apparatus function. In particular, the atomic data needed for the description of
spectral lines with an initial state in the 3d-multiplet show a high sensitivity to the correctness of sa.
This can be seen, for example, by the scale factor for the electron excitation cross-section for the
transition 3s4 → 3d12, and by the Einstein coefficient of the transition 3d2 → 3p10. This sensitivity
is caused by the overlap of the different spectral lines of transitions with an initial state in the 3d
multiplet in the measured spectra. Several of the 3d-multiplet lines cannot be well resolved and the
fraction of the measure ed intensity that is assigned to each line is sensitive to the precise form of
the apparatus function. This observation emphasizes the importance of the correct determination
of sa from the spectral data and need of monitoring the quality of the obtained description.

In the right part of Fig. 7.7, the effect of the optical depth of the transitions with final states
in the 3p-multiplet is shown. The influence on the reconstruction is significant, for this configu-
ration. The reconstructed parameters differ by several standard deviations from the ’true’ values
of the simulated data. The negligence of the additional escape factors has the same effect onto
the reconstruction like an overestimation of Einstein coefficients. When the data would allow an
unambiguous determination of the Einstein coefficients, the posterior could always be expected to
show a deviation towards negative values in the representation of of Fig. 7.7. This can, however,
not be observed in Fig. 7.7: the marginal posterior distributions of several Einstein coefficients
show a preference for values larger than their ’true’ values. This behavior is caused by the fact,
that the Einstein coefficients enter the forward model twice: The line intensity is proportional to
the respective Einstein coefficient for a given population density of the initial state, but the Einstein
coefficient also determines the population density by determining the rate coefficient depopulating
the initial state.

When an excited state can only be observed through a single spectral line, because other transi-
tions are too weak too be measured, then the two effects precisely cancel each other. In this case,
the line intensity is insensitive even to escape factors as small as 0.2 (transition 3p9 → 3s4, cf.
table 5.3, in 5.6). The 3p1-, 3p3-, and 3p9 levels are only measured through a single lines, the sec-
ond strongest lines of the 3p1-, 3p3 state have coefficients, which are about a factor of more than
50 smaller than the dominant coefficients. Accordingly, the confidence interval of the marginal
posteriors for the transitions from these levels extend precisely from -1 to 1.
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When there are more than one spectral line with the same initial state, the situation is different.
In this case, there is a positive correlation between the Einstein coefficients associated with the
same initial state. Typically, there are one or two large Einstein coefficients which dominantly de-
termine the population density of their initial state in the collisional radiative model. The Einstein
coefficients of the weaker transitions only determine the intensity of the respective spectral line,
but their influence to the population of the initial state can be neglected. The correlation between
all the coefficients occurs, because a higher value of a dominant Einstein coefficients leads to a
lower population density, which requires increased coefficients of all other transitions to obtain
the line intensities given by the data being reconstructed. The other way round, when the value
of a weak coefficient is increased, the spectral line of the weak transition can be fitted by reduc-
ing the population density of the initial state via increased Einstein coefficients of the dominantly
depopulating transitions.

This correlation is the reason, why the Einstein coefficients of transitions which are not sub-
ject to optical depth are overestimated: Due to the changed model, the ’true’ value of the some
Einstein coefficients are shifted to smaller values. (Accounting for the omitted Escape factors).
The reconstruction of the model parameters is biased towards the original unshifted value by the
informative priors used for the Einstein coefficients. This leads to an overestimation of the shifted
value which, because of the correlation described above, is accompanied with an overestimation
of the Einstein coefficient which are not subject to optical density, or only weakly, as e.g. the case
for the 3p8 → 3s3 transition.

7.1.4. Convergence of the Monte-Carlo Sampling

As described in 3.1.8, the Metropolis-Hastings algorithm, that was used to characterize the prob-
ability distributions is a Markov-chain based algorithm and as such does not produce independent
draws from the posterior distribution. Especially when sampling high dimensional distributions,
like for the present analysis, a large number of samples may be necessary for a comprehensive
characterization. In order to assess the number on required samples, the quality of the conver-
gence has to be monitored for each parameter of the sampled distribution.

Convergence of EEDF Reconstruction Autocorrelation length of all parameters bad parameter
In Fig. 7.8 and Fig. 7.9, the result of a study of the convergence of the reconstruction of the

parameters associated with the EEDF is shown. The plots on the left side of Fig. 7.8 and Fig. 7.9
show the result of a Monte-Carlo sampling using twelve chains with a length of 20000 samples,
while the plots on the right side show the result of a longer sampling (eight chains with 120000
samples). It can be seen, that especially for the parameterization shown in Fig. 7.8, after a chain
length of 20000 samples the uncertainty of the EEDF is still underestimated.

The two parameterization that were used for the product f (E)×Ne, differ with respect to the
normalization of the EEDF. Both are mathematically equivalent, in the sense that every functional
form that can be described by the can first also be described by the second. For the upper plot, an
EEDF was used, that is normalized to one (equation 5.6), and that is multiplied with the electron
density, just as expected by physical intuition. It can be seen, though, that this parameterization
has got an unfavorable influence on the convergence of the sampling: The uncertainty of the EEDF
obtained by the Monte-Carlo chains with 20000 samples (left of Fig. 7.8) is still underestimated.
Only in the much longer samplings shown on the right a better estimate of the uncertainty is
revealed.

For the plots in Fig. 7.9, a parameterization was employed where the electron density is not
implemented as sampling parameter, but set to a fixed value. In this case, the flexibility of the
correcting spline is utilized to describe the quantity FM(E)×Ne at different electron densities.
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Figure 7.8.: Reconstruction of the EEDF using Monte-Carlo chains with a length of 20000 (left) and
120000 (right) samples. The analyzed data were simulated using the forward model (cf. 7.1.2).
The result of the reconstruction (color coded histograms, summarized by the red graph with er-
ror bars, is shown together with the EEDF used for the simulation (black solid curve), see also
caption of Fig. 7.3. Here the electron density was implemented directly as model parameter
together with a normalized EEDF, see text for more details.
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Figure 7.9.: Reconstruction of the EEDF using Monte-Carlo chains with a length of 20000 (left) and
120000 (right) samples, see Fig. 7.8 for a description of the depicted elements. Here, an im-
plementation of the quantity f (E)×Ne, was used, which can be sampled more efficiently and
the EEDF is not normalized to one, see text for more details.

(cf. 5.4, equation 5.5). By using this parameterization a faster convergence of the Monte-Carlo is
achieved. This can be seen when comparing the left and right plot of Fig. 7.8: The uncertainties
obtained with short (20000) and long (120000) Monte-Carlo chains are more similar than in the
normalized case below.

Note, that also after the long samplings, the uncertainty bands of the two parameterizations
differ: The reconstruction using the normalized EEDF (Fig. 7.8) shows an increased uncertainty
around 15eV. This is consistent with the results discussed in 7.1.5: Electrons in the region between
approximately 12eV and 18eV have a weak influence on the population of the excited states of the
3p multiplet, as the cross-sections for excitation from the 3s levels decreases at these energies, and
the threshold for excitation from ground state is at 18.38eV. Therefore the information of the spec-
tral data does not constrain the electron population in this energy region. There uncertainty bands
also differ at low energies: the unnormalized parameterization shows a completely flat distribution
below approximately 8eV, while the normalized one, though also quite broad in this region shows
a clear preference for values of roughly 1014..1015 m−3eV−1. Also in this region, there is a very
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7.1. Validation of the Data Analysis Procedure

Table 7.3.: Parameters with the largest κ .

Parameter Autocorrelation length
4th knot of correction spline (21.5eV) 44978.2
3rd knot of correction spline (14.1eV) 35533.9
2nd knot of correction spline (7.1eV) 13786.6
5th knot of correction spline (28.7eV) 8211.16
electron temperature of Maxwellian 3315.67
scale factor of excitation cross-section 2p1 → 3p1 2364.18
effective density for optical depth of 3s4 2253.08
scale factor of excitation cross-section 3s4 → 3d10 1790.13
scale factor of excitation cross-section 2p1 → 3s4 1722.27
scale factor of excitation cross-section 2p1 → 3d11 1576.33
scale factor of excitation cross-section 3s4 → 3d11 1528.56

weak, or no contribution at all to the excited state populations. Therefore no inference about the
electron density at these energies can be made from the data. Consequently, the uncertainty in the
regions around 15 and below 8eV band mainly reflects the flexibility of the used parameterization
(cf. 7.1.5) instead of the information content of the data.
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Figure 7.10.: The autocorrelation lengths of all parameters of the model. The parameters are sorted by
autocorrelation length in descending order, see table 7.3 for the parameters with the largest
autocorrelation lengths.

In order to assess the quality of the convergence for all model parameters, the autocorrelation
length κ of the parameters is considered. As described in 3.1.8, κ quantifies the degree of statistical
dependence of succeeding samples, a small autocorrelation length is an indication for fast conver-
gence. A sample can be regarded as effectively statistically independent from another sample,
when the separation of the both it as at least κ samples.

In Fig. 7.10, the autocorrelation lengths of all parameters of the model are shown, as obtained
with the model-configuration used to create the right part of Fig. 7.9. The parameter are sorted
in order of descending autocorrelation length, a list of the parameters with the largest κ is given
in table 7.3. The majority of parameters has a κ , which is smaller than O(1000) samples. The
distribution of these parameters is well converged, when several Monte-Carlo chains with a length
of more than 10000 samples are used as in the preceding examples. This can be also seen in
Fig. 7.11, where the sequence of samples of the parameter with the tenth largest autocorrelation
length (1529 samples) is shown. The convergence criterion of Gelman50, given in equation 3.26
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(section 3.1.8) has got a value of
√

R̂ ≈ 1.03, which is close enough to unity, to indicate reasonable
convergence. All parameters with smaller κ , show an even better convergence.
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Figure 7.11.: Sequence of Monte-Carlo samples for a parameter with κ ∼ 1529 samples. The parameter
that is shown (ordinate), is a scale factor of the cross-section of electron excitation from the
3s4 to the 3d11 state. Eight chains, each with 1.2 · 105 samples were used for the MC run,
the samples are numbered from 0 to 9.6 · 105 throughout the different chains (abscissa), the
vertical dashed lines showing the end of the individual chains. The horizontal black lines
show the 0.16. 0.5 (median) and 0.84 quantile of distribution of each individual chain, the red
horizontal lines, show the 0.16 and 0.84 quantile and the median of the combined result.

There are, however, a few parameters, which have a considerably larger autocorrelation length,
rendering a length of the Monte-Carlo chains of several 105 samples or more desirable. Unfortu-
nately, the upper limit for the sensible length of a single chain is around 105 samples, requiring
about one week of computing time. In Fig. 7.12, the sequence of Monte-Carlo samples of the
parameter with the largest autocorrelation length (44978 samples) is shown. The slow variation of
the parameter value for subsequent samples reflects the slow convergence and long autocorrelation
length of the Markov chains for this parameter. Also, the results of the different chains differ more
strongly, than for the parameter shown in Fig. 7.11, as depicted by the horizontal black lines in
Fig. 7.12. The initial value, which was used for the eight chains, lies close to the median of the
sampled distribution. This is the case, because the result of a shorter, exploratory sampling was
used as starting point for the long chains.

The time traces of all chains, except of the two last ones, change the direction of their overall
trend at least once, giving an indication of the chains being close to convergence. The convergence

criterion of Gelman50 (cf. 3.1.8) has a value of
√

R̂ ≈ 1.57 for this parameter. In table 7.4 the
criterion of Gelman is shown for samplings of different lengths. For comparison, the criterion is
also listed for the parameter with the longest autocorrelation length of the reconstruction using the

normalized parameterization of the EEDF, as described above. It can be seen, that the
√

R̂ gets
closer to unity with increasing number of samples.√

R̂ quantifies the ratio between an upper and lower limit for the variance of the respective
parameter (equation 3.26). As the increase of the number of samples beyond 105 per chain would

be tedious, the ratio of
√

R̂ ≈ 1.57 is only taken as an indication, that the actual uncertainty of the
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Figure 7.12.: Sequence of Monte-Carlo samples for the value of the correcting spline (ordinate) at a position
of 21.5eV, κ ∼ 44978 samples. See Fig. 7.11 for a description of ordinate and the horizontal
lines.

parameters with the highest correlation lengths (>10000 samples, see table 7.3) might be slightly
larger than obtained from the Markov chain Monte-Carlo.

7.1.5. Influence of the Parameterization of the EEDF

The parameterization of the EEDF affects the result of the reconstruction by constraining the pos-
sible shapes of the EEDF. In order to allow the observation of deviations from a thermalized
Maxwellian distribution, a so called form-free parameterization (equation 5.5), is used for the
reconstruction (cf. 5.4). By form-free, the utilization of a spline-based parameterizations is de-
noted, which allows to describe a wide class of EEDFs with different shapes. The flexibility of
the spline-based parameterization depends on the number of knots and the order of the employed
spline function. The effect of parameterization with varying flexibility is examined in the present
section.

In Fig. 7.13 the Reconstruction of ’synthetic’ spectroscopic data is shown for different numbers
of spline knots. Generally it can be observed,that the width of the error band of the reconstructed
EEDF rises with increasing number of spline knots, reflecting the smaller amount of constrain-
ing information introduced by more flexible parameterizations. The reconstruction obtained using
only three spline knots shows an almost Maxwellian shape of the distribution function and the un-
certainty in the region just above 25 eV is indeed larger, than the uncertainty of the reconstruction
obtained using four knots. This is not in contradiction to the smaller flexibility of the parameteriza-
tion, as a model which is over-simplified and unable to reproduce the physical situation, frequently
leads to an increased uncertainty of reconstructed model parameters. (The description of the data
then usually is equally bad for a wider range of parameters.) The parameterizations with six and
eight spline knots are able to reproduce the shape of the EEDF used to generate the data, well.
When the number of spline knots is increased further, fine grained variations of the EEDF can be
formed, which the data is not sensitive to. The result is an increased error band in the region below
6eV and between 12eV and 16eV. The spectroscopic data seem to carry no information about the
electron population in these regions of energy. In order to examine the physical plausibility of this
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Table 7.4.: Convergence criterion of Gelman50 (cf. 3.1.8) for samplings of different length. The samplings
also depicted in Fig. 7.8 and Fig. 7.9 (see above) were used to obtain the numbers. In each case,

the
√

R̂ (equation 3.26) of the parameter with the longest autocorrelation length (2nd knot of
correction spline for Fig. 7.8, κ ∼ 88880 samples, and 4th knot of correction spline for Fig. 7.9:
κ ∼ 44978 samples) is given. For the shorter samplings subsets of the whole sequences were
used.

√
R̂

√
R̂

EEDF normalized EEDF not normalized
κ ∼ 88880 samples κ ∼ 44978 samples

Samples (Figure 7.8) (Figure 7.9)

8*6000 9.1 7.9
8*12000 7.6 4.58
8*30000 5.1 3.82
8*60000 4.6 2.81
8*90000 3.2 1.94

8*120000 2.1 1.57
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Figure 7.13.: Reconstruction of the EEDF from simulated data using different numbers of spline knots.
The ordinates depict the number of electrons per energy interval per volume on a logarithmic
scale. The black solid curve shows the EEDF used to generate the ’synthetic’ data, while
the red curve with error bars shows then expectation value and variance of the result of the
reconstruction (cf. 7.1.2). The dotted vertical lines indicate the positions of the knots of
the spline of the EEDF. The color coded histogram in the background shows the marginal
probability distribution as obtained by the Monte-Carlo sampling. See also 7.1.2 for more
details of this representation of the result of the reconstruction.
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assertion, The variation of the population densities caused by a change of the EEDF at a given
energy is considered.

Energy Dependence of the Elementary Processes.

The effect of a change of the EEDF at different energies is assessed by considering a piecewise
constant parameterization of the EEDF was used:

fpw(E) =





f1 for E < E1

f2 for E1 < E < E2
...

fn for En−1 < E < En

, (7.1)

where each fi is a constant. In order to obtain the relative change of the population density
∆ni/ni(E), a set of fi was used, which replicates the EEDF from kinetic modelling13. Each fi

was sequentially increased by 10% and the resulting variations of the population densities were
plotted versus the energy Ei, see Fig. ??

The thresholds for the different excitation and de-excitation channels can be observed clearly
(direct excitation, stepwise excitation, and cascade contributions).

The reconstruction of the EEDF is expected to be well determined by the data in energy regions
where two conditions are fulfilled: First, the variation of the population densities must not be small
and second, there have to be differences in the shape of ∆ni/ni(E) for some of the excited states.
When the values of ∆ni/ni(E) for all states are proportional to each other, a variation of the EEDF
influences all line intensities in a similar way. In that case, the EEDF cannot be unambiguously
reconstructed.

The uncertainty of the reconstructed EEDF reflects how well these conditions are fulfilled for
different energy regions. The uncertainty of the reconstructed EEDF exhibits a minimum around
17 eV, where the spread in the variations is large. Above 30 eV, where the error band starts to
increase considerably, the variation of the population densities also becomes small. In the region
between 10 and 17 eV, the EEDF is constrained by the chosen parameterization with six spline
knots. Samplings with more flexible parameterizations of the EEDF also show an increased error
band in this region.
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7.2. Results Obtained from the Emission Spectra of the Neon

Discharge

In this chapter, the results obtained by the analysis of data from optical emission spectroscopy
on a neon discharge are presented. The EEDF in the positive column is compared to the EEDF
from independent kinetic modelling, and a good agreement is found. The results of the analysis of
spectroscopic data collected for different discharge conditions are presented and compared to data
from probe measurements11 and kinetic modelling13 where available.

The integrated data analysis approach allows to draw conclusions about the validity of the used
set of atomic data. The results of this validation are given. The consistence of previously unmea-
sured Einstein coefficients could be verified. Correction factors for the rate coefficients for electron
excitation of a part of the considered levels are extracted from the spectral data. The corrections
verify the relevance of continuum coupling in the quantum mechanical models used to obtain the
electron excitation cross-sections.

7.2.1. Reconstruction of the EEDF
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Figure 7.15.: Reconstruction of the EEDF in the positive column of the neon dc-discharge. The ordinate de-
picts the number of electrons per energy interval per volume on a logarithmic scale. The black
dotted curve, showing the EEDF as obtained in independent kinetic modelling13, acts as a ref-
erence. The black solid curve shows a Maxwellian distribution. The red curve with error bars
shows the expectation value and variance of the result of the reconstruction (cf. 7.1.2). The
dotted vertical lines indicate the positions of the knots of the spline of the EEDF. The color
coded histogram in the background shows the marginal probability distribution as obtained
by the Monte-Carlo sampling (see also text).

In Fig. 7.15 the result of the reconstruction is shown for spectroscopic data obtained from the
positive column of a neon discharge. The discharge (radius 1.5cm, gas pressure 89Pa) was oper-
ated without striation at a discharge current of I = 5mA. The uncertainty band of the reconstruction
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(cf. 7.1.2 and 7.1.5) results from experimental errors: uncertainty of calibration procedure, appa-
ratus function (cf. chapter 6) and from the uncertainty of the atomic data set.
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Figure 7.16.: Reconstruction of the EEDF in the positive column of the neon dc-discharge for different
discharge currents. See caption of Fig. 7.15 for the description of the graphical representation.
The respective discharge-current is given in the upper-right corner of each reconstruction. The
black solid curve shows the result of independent kinetic modelling for a discharge current of
5mA. The result for the electron density is shown in Fig. 7.17.

For the reconstruction, the EEDF was described using the parameterization given in equa-
tion (5.5), which uses a spline to achieve a flexible description of non-thermal features of the
distribution function. The positions of the spline knots were were fixed, as indicated by the verti-
cal dashed lines in Fig. 7.15. The Maxwellian distribution is shown to illustrate the non-thermal
features of the reconstructed distribution.

The result of the reconstruction is compared to the EEDF obtained by independent kinetic mod-
els13. The model, which our results are compared to, describing a neon discharge with radius
1.5cm and a neon pressure of 90Pa, was validated in specific experiments13: The axial field
strength and the radial variation of the space charge potential were verified using probe measure-
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7.2. Results Obtained from the Emission Spectra of the Neon Discharge

ments7 and the absolute densities of the excited atoms were measured as a function of radius by
measuring the longitudinally integrated optical depth with absorption spectroscopy10,12.

In Fig. 7.16, the result of the reconstruction is shown for different discharge currents. The EEDF
from kinetic modelling, which is shown for comparison, was obtained for a discharge current of
5mA. It can be seen, that only the electron density (normalization of displayed function) varies for
the different currents, while the reconstructed shape is very similar for all six currents.

It is known from modelling and probe measurements, see e.g. Ref. (66), that in the stable low-
pressure glow discharge, the discharge current has a weak influence on the longitudinal electric
field. The shape of the EEDF, which is the result of an equilibrium between the energy gain
in the electric field and energy-loss processes, shows the same independence. In contrast, the
electron density is expected to change proportional to the discharge current, because electrons are
the strongly predominating charge carriers.
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Figure 7.17.: Electron densities obtained from the reconstruction at different discharge currents (cf.
Fig. 7.16). The asymmetric errors are obtained from the 0.16 and 0.84 quantile of the marginal
distribution.

In Fig. 7.17 the electron density is shown as obtained by the Monte-Carlo sampling. Shown is
the median of the marginal posterior of the integral

∫
f (E)×Ne dE (cf. equation 5.5). The error

bars, obtained from the 0.16 and 0.84 quantile of the marginal distribution include all uncertainties
of the reconstruction (experimental, atomic data). The proportionality to the discharge current,
also known from probe measurements11, is apparent by comparison with the straight line fitted to
the data points (intercept 0, slope 4.1 ·1014 electrons [m−3mA−1]).

The comparison of the EEDF in the positive column of the discharge with independent results
from kinetic modelling shows good agreement. The electron density and the shape of the EEDF
for energies below ∼ 30eV can be obtained from the spectroscopic data. Above this energy, the
population of electrons in the plasma is too small to be reflected in the spectroscopic data. Here,
an upper limit can be stated for the electron population. Non-thermal features, the steepening
of the EEDF in the region of the excitation threshold, are significantly reconstructed from the
spectroscopic data.

Axially Resolved Measurements

The plasma volume, which is imaged onto the optical fiber of the spectrometer, has the form of
a double-cone with a diameter of ≈ 1mm (cf. 5.7). By moving the discharge tube relative to
the imaging optic, spatially resolved measurements are possible. In the following section, the
results from axially resolved measurements of the anode- and cathode region of the discharge
are presented. In these regions, the discharge current has to pass through the interface between
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the plasma and the conducting surfaces of the electrodes, where a complicated, two-dimensional
spatially inhomogeneous plasma is found.

Figure 7.18.: Light emission in the anode region of a stable neon dc discharge. (discharge parameters:
I = 10mA, p0 = 120Pa, r0 = 1.15cm) On the left, the anode can be seen, which is covered
by a luminous layer. The emission is obtained from a digital photography (light emission is
shown in dark). The approximate scale is given for orientation.

Anode The interaction between anode and plasma reaches a distance into the plasma given by
roughly one electron energy relation length λε , which is the distance an electron has to travel along
the electric field in the positive column of the plasma to gain the energy needed to excite a neutral
atoms in the plasma. Close to the anode (roughly one Debye radius), the anode fall appears, where
the potential drops from a value of a few electron Volts (depending on discharge parameters, a
typical value is ∼ −7eV) to the ground potential of the conducting anode. In Fig. 7.18, the light
emission in the anode region of a stable neon dc-discharge is shown. The thin luminous layer
in front of the anode on the left of the figure, shows the extension of the anode fall (< 2mm).
The brightness reaches the full value of the positive column at a distance of 2..3cm from the
anode. This behavior can also be identified in Fig. 7.21, where the relative axial variation of the
intensity is shown. The right part of the figure shows results from literature8. Here, the anode-
sheath can clearly be observed in the variation of the emission intensity, while the spectroscopic
measurement in front of the anode does not show an increased intensity. The reason for this, is the
spatial resolution of the used line-of-sight. The line-of-sight which is closest to the anode actually
covers a part of the dark anode. The average energy (Fig. 7.20) reconstructed for this measurement,
however, shows, that the anode sheath was clearly captured.

In Fig. 7.19, the result of the reconstruction at different axial positions in front of the anode is
shown. The measurements were performed for a dc discharge in neon with a neutral gas pressure
p0 = 120Pa, a discharge current of I = 10mA, and a tube radius of r0 = 1.15cm. Although the
axial distribution of the light intensity varies strongly (Fig. 7.21), the shape of the reconstructed
EEDF does only shows subtle variations. The EEDF found next to the anode, however, shows
a significantly different shape than the EEDF in the positive column, with a strongly increased
average energy. In Fig. 7.20, the actual EEDF (normalized to one) is shown together with the
average energy of the distribution.

In Fig 7.21, the axial distribution of average energy, electron density and light emission intensity
are shown. The electron density starts to fall of at a larger distance to the anode, than the light emis-
sion. At distances between ∼3 and ∼ 5cm from the anode, the influence of the reduced electron
density on the light emission is compensated by an increase of the average energy of the electrons.
According to the result, shown in Fig. 7.21, the electron density falls to one third of the density in
the positive column before the electrons enter the region of the anode fall, where it is decreased
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Figure 7.19.: Result of the reconstruction of the EEDF from spectroscopic data at different axial positions
(z) in front of the anode (left). The vertical axis depicts the number of electrons per energy
interval per volume on a logarithmic scale, only the median of the marginal distribution is
shown, for reasons of clarity. The right part of the figure shows results from kinetic modelling,
(picture taken from Ref.8). The anode is located at z = 0cm in both cases.

to 5% of the value in the positive column. Notably, the early decrease of the electron density,
accompanied by a slight increase in average energy, as known from probe measurements8,11, is
near the limit of the significance of the reconstruction.
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Figure 7.20.: The EEDF without electron density (normalized to one) for different axial positions z in front
of the anode. The The anode is located at z = 0cm. The value of the EEDF is shown by the
color-code. The points with error bars, indicate the average energy (ordinate) as obtained by
the MC sampling. The error of the average energy is obtained from the 0.16 and 0.84 quantile
of the marginal distributions.

In general can be observed, that the decline of the light emission in front of the anode is mainly
caused by a reduced electron density, rather than a change of the energy distribution of the elec-
trons. Quite contrarily, a slightly increased average energy is found in front of the anode. The
small variation of the energy distribution, as well as the decay of the electron density over a dis-
tance of a few centimeters, which is much longer than any considerable variation of the axial
electric field8,14, indicate a diffusive transport of the electrons towards the anode, which absorbs
electrons approximately independent from their energy. If the velocity distribution of the electrons
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Figure 7.21.: Relative axial distributions of plasma parameters in the anode region. The values obtained
from the reconstruction of spectroscopic data (left) are compared to results from kinetic mod-
elling (picture taken from Ref.8). The average energy 〈w〉/〈w0〉, the electron density ne/ne0

and the intensity of the light emission I/I0 are shown normalized with respect to their values
in the positive column. The shaded areas in the left plot show the uncertainty (experimental
and atomic data set) as obtained by the MC sampling (0.16 and 0.84 quantile of marginal
distributions). The average energy of the spectroscopic measurement closest to the anode is
out of scale here, it can be seen in Fig. 7.20. The result from Ref. (8) refer to a neon dis-
charge with I = 10mA, p = 133Pa, r0 = 1.5cm, the spectroscopic data was obtained for the
parameters: I = 10mA, p = 120Pa, r0 = 1.15cm.

would have a strong anisotropy, corresponding to a flow-like transport, rather than diffusion, the
electron density would not decrease in front of the anode (In the limit of a directed beam towards
a perfect absorbing anode, the electron density is constant). The small variation of the shape of the
EEDF favors an energy independent absorption of electrons at the anode. If there were preferred
energies, at which electrons would be reflected from the anode and could escape from the anode
fall region, the shape of the EEDF would be influenced. In consistence with this considerations, a
finite value of the electron density is found in front of the anode fall by the reconstruction of the
spectroscopic data. Unlike shown in the right part of Fig. 7.21, a finite electron density in front
of the anode is observed in probe measurements11 and modelling14. Assuming the validity of the
the picture given above, the increased anisotropy14 in the region of the anode fall, caused by the
electric field next to the anode, leads to a flattening of the electron density distribution in the region
of the anode fall (z . 2mm).

The average energy of the spectral measurement next to the anode shows an average energy,
which is increased by 6eV compared to the average energy of the next measurement. This is in
agreement with the magnitude of the anode fall considered in Refs. (8,14), which is 5 to 6eV, and
to the increase in average energy next to the anode given in Ref. (14), which is 3 to 6eV larger than
in the positive column. The relative electron density of 0.05, which was reconstructed from the
spectral measurement next to the anode, most probably underestimates the actual density, as the
line-of-sight of the spectrometer must have covered a part of the anode, causing an overestimation
of the emitting plasma volume. The values for the electron density observed in probe measure-
ments11 and modelling14 of discharge in neon with similar parameters are in the region of 10%
of the value of the positive column, which is in reasonable agreement with an interpolation of the
axial distribution shown in the left part of Fig 7.21.

In Fig. 7.22, the axial distribution of the average energy obtained from probe measurements is
shown. The behavior in front of the anode is similar to the result obtained from the analysis of the
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Figure 7.22.: Axial distribution of the average energy of the electrons in neon discharges at different pres-
sures, obtained by probe measurements (picture taken from Ref.11). The average energy W

(ordinate) is shown as function of the axial position, the anode is located at z = 0cm. The
parameters of the discharges are indicated in the plot.

spectroscopic data. Starting from the positive column, the average energy first rises slowly, then a
local minimum can be found between one and two centimeters distance from the anode. Finally,
the average energy rises slowly before the anode fall is reached. Inside the anode fall, no probe
measurements are possible, while the spectroscopic approach allows to see the strong increase of
average energy.

The local minimum in front of the anode coincides with the peak of slow electrons that can be
found in the EEDF from kinetic modelling8 shown in the right part of Fig. 7.21. The appearance
of a peak of slow electrons, is an indication for the flattening of the plasma potential in front of
the anode, reflecting the accumulation of positively charged ions in front of the anode. In the
calculations of Ref. (8), the position of the peak of electrons coincides with the position of the
space charge, i.e. the position where the potential gradient changes its slope.

Cathode The plasma of the negative glow and in the vicinity of the cathode is, in compari-
son to the positive column, characterized by distinct spatially inhomogeneity and complex kinetic
processes. The strong electric field next to the cathode lead to electron distributions far from ther-
modynamic equilibrium. A qualitative picture of the processes generally observed in the cathode
region of a gas discharge is given in 2.2.1. In the following section, the results for the recon-
struction of the electron energy distribution at different axial positions close to the cathode are
presented. The measurements where made on a stable glow discharge in neon with a discharge
current I = 10mA, a neon gas pressure of p0 = 120Pa, and a tube radius of r0 = 1.15cm. The dis-
charge tube was equipped with a cylindrical hollow cathode with a diameter of 1cm and a length
of 3cm.

In Fig. 7.23, an overview over the Result of the reconstruction is given. The reconstructed EEDF
does not show a distinct acceleration and relaxation of the electrons, like observed e.g. in low pres-
sure helium discharges11. The variations of the EEDF, reconstructed from the emission spectra of
the neon discharge, are more subtle. A flattening of the low energy part of the distribution can
be observed close to the cathode. Also, some of the reconstructed EEDF in this region show two
maxima, one at low energies around 2eV and a second one, at approximately 10eV. A possible ex-
planation for a second maximum in the electron distribution could be the observation of secondary
electrons from ionization, which have not yet gained energy and fast electrons which already have
gained energy in the strong field close to the cathode. The reconstructed electron density shows a
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Figure 7.23.: Result of the reconstruction of the EEDF from spectroscopic data at different axial positions z

in front of the Cathode. Left plot: The vertical axis depicts the number of electrons per energy
interval per volume on a logarithmic scale, only the median of the marginal distribution is
shown, for reasons of clarity. Right plot: The EEDF without electron density (normalized to
one) for different axial positions z in front of the cathode. The value of the EEDF is shown by
the color-code. The points with error bars, indicate the average energy (ordinate) as obtained
by the MC sampling. The error of the average energy is obtained from the 0.16 and 0.84
quantile of the marginal distributions. The cathode is located at z = 0cm. The

strong variation of a factor of roughly 100 between the maximal density in the negative glow and
the minimum close to the cathode.

In Fig. 7.24, the relative axial distributions of the light emission and the reconstructed electron
density and average electron energy are shown. Like in the anode region, the variation of the light
emission is closely connected to a variation of the electron density, while the reconstructed average
energy only shows a slight variation.

In the right part of Fig. 7.24, the reconstructed average energy is compared to a line ratio ob-
tained from the spectra that were reconstructed. The distribution of the light emission is shown for
orientation. The line ratio, that is shown, is obtained from the intensity of the line at λ = 640.2nm
(transition 3p9 →3s4) divided by the intensity of the line at λ = 607.43nm (transition 3p3 →3s3).
As can be seen in Fig. ??, the 3p9 state is only populated via excitation from ground state, while
the 3p3 also shows a significant contribution from stepwise excitation via the metastable 3s states.
Consequently, the line ratio of the two dominant decay channels of these states is sensitive to the
ratio of the electrons populations in the region of ∼ 8eV and 22eV.

The axial variation of the line ratio reflects a behavior of the electrons, which is consistent with
the picture of the processes in the discharge as described in 2.2.1: In the Aston dark space, the
number of higher energetic electrons rises until a region is reached where strong ionization leads
to a steep rise of the electron density and subsequent light emission (negative glow). The cathode
glow and cathode darks space, which would be found in front of the region of high ionization
cannot be distinguished in the discharge under consideration. In the vicinity of the negative glow,
a large space-charge of positive ions builds up and shields the positive column from the strong
fields of the cathode. The number of high energetic electrons is strongly reduced by the energy
loss in ionization and excitation processes, which is compensated by the weak electric field behind
the negative glow. The region of weak field is called the Faraday space. Here, the electric field and
light emission gradually increase to their values in the positive column.
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Figure 7.24.: Relative axial distribution of different plasma parameters in the cathode region. On the left,
the average energy 〈w〉/〈w0〉, the electron density ne/ne0 and the intensity of the light emis-
sion I/I0 are shown normalized with respect to their values in the positive column. The shaded
areas show the uncertainty (experimental and atomic data set) as obtained by the MC sam-
pling (0.16 and 0.84 quantile of marginal distributions). On the right, the average energy is
compared to the ratio R3p9/3p3

of two line intensities with two initial states in the 3p-multiplet
showing a energy dependent population. Large values of the ratio correspond an increase of
higher energetic electrons.

The average energy shown in Fig. 7.24, does not reflect the physical processes as discussed
above and shown by the line ratio in the right part of the figure. The increase of energy in the
Aston dark space can not be observed in the average energy. On the contrary, the average energy
seems to decrease in the first two centimeters after the cathode. A possible explanation for this
behavior is the division of the electron population in a low and high energy part, described above,
as a multi-modal distribution cannot not be appropriately characterized by its first moment. On the
other hand, the shape of the distributions (Fig. 7.23) does also not show a clear increase of high
energetic electrons. The shape of the EEDF in the negative glow, showing a large fraction of low
energy electrons, is consistent with the physical picture, again.

7.2.2. Validation of Atomic Data

The spectroscopic data contains information about the physical processes of the plasma. The rate
coefficients for the electron excitation of the gas atoms depend on the EEDF, but also on the re-
spective cross-section. The relative intensities of lines with the same initial state carry precise
information about the branching ratios of the underlying transitions. It is a feature of the prob-
abilistic data analysis, that the data model is not only inverted with respect to the parameters of
primary interest, associated with EEDF of the plasma, but also concerning other parameters. The
Monte-Carlo sampling automatically reveals the information that the spectral data contains about
the other model parameters.

The atomic data used for the collisional-radiative model is a consistent set of cross-sections and
transition probabilities from B-spline R-Matrix calculations38 (cf. 2.3). In collaboration with the
authors of these calculations, the uncertainties of the data were estimated (cf. 6.3.2). The proper
treatment of the atomic data and its uncertainties is a crucial part of the analysis. Unavoidable
errors in the atomic data needed as input for the plasma model lead to a failure of the form-free
reconstruction of the EEDF, when the uncertainty is not identified correctly (cf. 6.3.2). As the
experiments for the determination of excitation cross-sections require a considerable effort, only a
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part of the atomic data base has been validated experimentally. Further validation of the theoretical
results is very important for the practical application of the data, as well as for the development of
theoretical models.

In section 7.1.2 the potential of the integrated data analysis approach for the validation of atomic
data is discussed based on the reconstruction of ’synthetic’ data. It was found, that the spectro-
scopic data is sensitive to the consistent incorporation of Einstein coefficients, for which no exper-
imental data is available from NIST37 and that information about rate coefficients of the electron
excitation of a part of the higher excited states can be gained from the spectroscopic data.

Influence of Continuum-Coupling

As mentioned in 2.3, the correct calculation of excitation cross-sections at intermediate energies (in
the region of the ionization threshold) requires the description of coupling to high lying Rydberg
states and the ionization continuum. A approximate description of the ionized continuum can be
obtained by the introduction of a number of pseudo-states in the R-matrix approach. Unfortunately,
the number of pseudo-states needed for the accurate description of a complex target like neon is
large67, and no data set obtained from a converged pseudo-state expansion is available.

The authors of Ref. (67) have performed a series of R-matrix with pseudo-state calculations
in LS coupling, neglecting the complex target structure of neon. This way, the magnitude of the
effects of continuum coupling could be examined. The obtained cross-sections cannot be used for
plasma modelling, as the excited state of neon are no pure LS states, but the approximate mapping
of the LS to the physical jK states allows to assess the importance of continuum coupling for some
of excited states.
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Figure 7.25.: Cross-section67 [10−20m2] for the excitation from the ground to the 3P1 state and the integrand
entering the rate coefficient I(E) (equation 7.2). The red curve shows a 61 state R-Matrix
calculation without pseudo-states, while the black curve depicts a 243 state RMPS calculation
with pseudo-states. The rate coefficients obtained with the two integrands differ by a factor
of 0.91.

In Fig. 7.25 and Fig. 7.25, the cross section for the 3P1 and the 1P1 state (LS coupling) are shown
as obtained from R-Matrix calculation with and without inclusion of pseudo-states. The integrand
of the rate coefficient (cf. 5.2) for both cross-sections is also shown in the figures:

I(E) = σ(E) f (E)
√

2E/m, (7.2)

where the EEDF of the positive column of the discharge in neon is used. In Fig. 7.27, the factor
f (E)

√
2E/m by which the cross-section is multiplied in the rate coefficient is shown. In the region

above the threshold for the excitation of the 3d states, the weighting function has the shape of an
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Figure 7.26.: Cross-section67 [10−20m2] for the excitation from the ground to the 1P1 state and the integrand
entering the rate coefficient I(E) (equation 7.2). The red curve shows a 61 state R-Matrix
calculation without pseudo-states, while the black curve depicts a 243 state RMPS calculation
with pseudo-states. The rate coefficients obtained with the two integrands differ by a factor
of 0.51.
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Figure 7.27.: Weighting function of the rate coefficient. The cross section is multiplied by this function
f (E)

√
2E/m for the integration of the rate coefficient. The largest weight is at low energies

where the considered cross-sections vanish. Above the threshold for the excitation of the 3d
levels, the weighting function has the shape of exponentially decreasing function.

exponentially decreasing function. The correct consideration of continuum-coupling leads for the
LS states to a reduction of the rate coefficient by a factor of 0.91 (3P1) and 0.51 (1P1), respectively.

In Fig. 7.28, the marginal distributions for the corrections of the excitation cross sections, as
obtained from the analysis of the spectroscopic data from the positive column of a stable dc dis-
charge in neon are shown (discharge parameters: p0 = 89Pa, I = 25mA, r0 = 1.5cm.). In table 7.5,
numerical values are stated for some of the transitions. The reproducibility of the reconstructed
values was verified with data obtained for different discharge parameters (p0 = 120Pa, I = 10mA,
r0 = 1.15cm and with spectra from different axial positions and currents in both discharges. The
robustness against modifications of the data model, that are within the scope of certain approxi-
mations (cf. 7.1.3) was checked. The median of the marginal distribution is given together with
asymmetric error margins obtained from the 0.16 and the 0.84 quantile of the distribution. Note
that for the transitions to the 3d multiplet a numerical value of roughly 0.85+0.6

−0.35 corresponds to
the pure prior information, i.e. scale factors for which the spectral data is not sensitive§.

§The asymmetric shape of the log-normal distribution leads to a median of 0.85 for log-normal with a mean of one
and a standard deviation of 0.6, cf. Fig7.28. This asymmetry reduces the clarity of the presentation of the result, but
has a small effect if the spectroscopic data is informative. Other priors might be used for future analysis.
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The two large expected corrections for the 3d7 and the 3d1 level are clearly confirmed by the
spectroscopic data, verifying the transferability of the results obtained by the LS coupling calcu-
lations of Ref. (67) to the actual excited states of the neon. Other large corrections are observed
for the ground→3d3 and the 3d4 →3d5 transition. The other correction factors lie in the range of
0.6 to 1.3. This is not unexpected, as the relative uncertainty of the excitation cross-sections was
estimated with 60%. For many of the excitations from the 3s4 state, a reduction is preferred by the
spectroscopic data.

For the excitation of the 3d11 state, a more pronounced reduction of the rate coefficient was
found by the analysis of the spectroscopic data, than expected by the convergence study of Bal-
lance. Given the overall distribution of the correction factors, this is not necessarily an indication
for a larger effect of the continuum-coupling, but could also be explained by the generally moder-
ate accuracy of the calculations for the cross-sections for excitation of states in the 3d-multiplet.

Einstein Coefficients

In Fig. 7.30 the marginal distributions of the Einstein coefficients, as obtained from the analysis
of the spectroscopic data from the positive column of a stable dc discharge in neon are shown
(discharge parameters: p0 = 89Pa, I = 25mA, r0 = 1.5cm.). The width of the distribution is
generally smaller than for the scale factors. (See Fig. 6.1, for the prior uncertainties of the Einstein
coefficients) This reflects the fact, that accuracy of the transition probabilities obtained from atomic
structure calculations is higher than the accuracy of the excitation cross-sections. Also here, the
reproducibility for different discharge conditions and the robustness against model approximations
was studied (cf. 7.1.3).

In table 7.6, the numerical values for Einstein coefficients are given, which could be validated
by the analysis of spectroscopic data. Overall, a good agreement between the spectroscopic data
and the results from atomic structure calculations38 could be found. Only for a small number of
number of transitions, a slightly significant deviation is found by the spectroscopic measurement.

For the 3d1 →3p7 transition, the result from the spectroscopic data lies closer to the NIST value
than the result from the structure calculations. For other transitions (3d7 →3p7, 3d1 →3p5) the
result of the BSRM calculations could be confirmed. The value obtained for the Einstein coefficient
of the 3d2 →3p4 transition is lower than the result of the BSRM calculation, but coincides with the
NIST value within errors.

In Fig. 7.29 the part of the emission spectrum is shown, where the lines from transitions with
initial state in the 3d-multiplet are found. Although not all lines can be well resolved by the simple
spectrometer, the precise knowledge about the apparatus function of the spectrometer allows the
analysis of this part of the spectrum.
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Figure 7.28.: Marginal probability distributions for correction factors for the cross sections entering the
collisional radiative model obtained from the analysis of spectroscopic data. Each row in the
plot corresponds to one correction factor. The respective transition is labelled on the left. A
value of one corresponds to the original cross section. The error bars, which are also shown
are obtained from the 0.16, the 0.5 (median) and 0.85 quantile of the distribution.
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Table 7.5.: Experimentally determined correction factors for the cross-sections to the 3d and 3p levels. The
corrections are given for cross-sections of excitation from the ground state and the three lowest

3s states. Where the inference from the spectroscopic data yields no additional information,
the correction is shown in gray. In some cases the sum of the corrections for excitation from
the ground plus and the excitation from the 3s4 state is better determined than the individual
corrections (cf. 7.1.2), in these cases the sum is given in the rightmost column. The results of
the convergence study by Ballance67 are given in the column labelled “RMPS” (cf. Fig.7.25 and
Fig. 7.26), the numbers are directly comparable to the correction of the excitation from ground
state, which is stated in the next column.

final- RMPS ground 3s4 3s3 3s2 gr+3s4

state

3d12 1 0.81+0.52
−0.33 0.63+0.12

−0.12 0.85+0.61
−0.36 0.85+0.6

−0.35 1.5+0.44
−0.3

3d11 0.9 0.66+0.27
−0.26 0.75+0.23

−0.26 0.85+0.59
−0.36 0.85+0.6

−0.35 1.4+0.16
−0.15

3d10 0.84+0.59
−0.35 0.72+0.11

−0.1 0.85+0.6
−0.36 0.84+0.6

−0.35
3d9 1.2+0.84

−0.52 1.3+0.64
−0.61 1.1+0.73

−0.5 0.85+0.6
−0.36 2.7+0.54

−0.51
3d8 1 0.87+0.53

−0.36 0.79+0.17
−0.17 0.87+0.63

−0.37 0.85+0.61
−0.36 1.7+0.39

−0.3
3d7 0.5 0.49+0.11

−0.11 0.73+0.42
−0.29 0.83+0.58

−0.35 0.85+0.61
−0.36 1.2+0.33

−0.25
3d6 0.93+0.58

−0.39 0.96+0.3
−0.3 0.9+0.63

−0.38 0.86+0.62
−0.36 2+0.38

−0.34
3d5 0.85+0.6

−0.35 0.61+0.12
−0.13 0.85+0.6

−0.36 0.85+0.61
−0.36 1.5+0.51

−0.31
3d4 0.85+0.55

−0.35 0.85+0.61
−0.36 0.85+0.6

−0.36 0.69+0.15
−0.14

3d3 1.7+0.58
−0.71 0.87+0.63

−0.37 1.2+0.92
−0.57 0.91+0.67

−0.39
3d2 1.1+0.71

−0.48 0.86+0.61
−0.37 0.91+0.67

−0.39 1.3+0.34
−0.3

3d1 0.5 0.39+0.1
−0.094 0.84+0.59

−0.35 0.7+0.42
−0.27 0.8+0.56

−0.33

3p10 1.1+0.47
−0.39 1.5+0.25

−0.23 0.94+0.43
−0.3 0.96+0.46

−0.32
3p9 0.96+0.41

−0.31 1+0.13
−0.14 0.93+0.43

−0.3 0.93+0.43
−0.29

3p8 1+0.39
−0.3 1.3+0.37

−0.33 0.99+0.47
−0.33 0.93+0.43

−0.3
3p7 1+0.39

−0.31 1+0.41
−0.33 1.1+0.48

−0.32 1.1+0.35
−0.3

3p6 1.1+0.31
−0.3 1+0.18

−0.3 0.93+0.44
−0.3 0.93+0.43

−0.3 2.1+0.19
−0.2

3p5 1.2+0.33
−0.33 0.94+0.41

−0.3 0.93+0.43
−0.3 0.71+0.17

−0.15
3p4 1+0.22

−0.2 0.9+0.38
−0.26 0.94+0.37

−0.3 0.92+0.43
−0.29 1.9+0.27

−0.24
3p3 0.9+0.17

−0.18 0.93+0.43
−0.3 0.88+0.35

−0.24 0.93+0.43
−0.29

3p2 0.82+0.27
−0.22 0.85+0.29

−0.24 0.91+0.41
−0.28 0.84+0.24

−0.22
3p1 0.78+0.069

−0.065 0.92+0.43
−0.29 0.93+0.44

−0.29 0.93+0.42
−0.29
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Figure 7.29.: Result of the model of the discharge in neon and the spectroscopic measurement. The part of
the spectrum is shown, where the lines from transitions with initial state in the 3d-multiplet
are found. The intensity is shown on a logarithmic scale. The red area is the result of the
model and its uncertainty, the black points with error bars show the measured spectrum. The
blue dashed curve shows the difference between model and measurement in units of standard
deviations. The positions of the spectral lines are indicated by the labels.

Table 7.6.: Einstein coefficients for which inference can be made based on the spectral data, the errors are
relative. In the second column, the value from the NIST37 tables is given, where available.
The column labels “BSRM” states the value from the atomic structure calculations38 is given.
Column “IDA” shows the results obtained by the analysis of the spectroscopic data. The relative
errors are obtained from the 0.16 and 0.84 quantile of the distribution. The last row indicates
significant deviations between “IDA” and “BSRM”.

Transition NIST BSRM (av) IDA significant
3d5 →3p9 − 1.46·107± 0.11 1.6·107 +0.09

−0.08 yes
3d7 →3p8 − 3.4·106± 0.14 3.34·106 +0.11

−0.1
3d6 →3p8 − 1.62·107± 0.10 1.73·107 +0.08

−0.07
3d11 →3p7 1.1·105± 0.5 9.2·104± 0.21 8.94·104 +0.21

−0.17
3d8 →3p7 − 1.76·106± 0.15 1.97·106 +0.15

−0.13
3d7 →3p7 2.1·107± 0.5 1.4·107± 0.11 1.37·107 +0.09

−0.08
3d6 →3p7 − 2.36·107± 0.1 2.23·107 +0.08

−0.07
3d4 →3p7 − 1.14·107± 0.11 1.2·107 +0.08

−0.07
3d1 →3p7 4.9·106± 0.5 3.88·106± 0.13 4.68·106 +0.13

−0.11 yes
3d11 →3p6 − 5.69·106± 0.13 6.31·106 +0.11

−0.10
3d9 →3p6 − 6.25·106± 0.12 6.34·106 +0.11

−0.10
3d8 →3p6 − 1.66·107± 0.10 1.64·107 +0.07

−0.07
3d5 →3p6 − 3.08·107± 0.1 2.78·107 +0.08

−0.08 yes
3d3 →3p6 − 2.98·106± 0.14 2.91·106 +0.12

−0.10
3d2 →3p6 2.03·106± 0.25 2.05·106± 0.15 2.14·106 +0.12

−0.10
3d4 →3p5 − 3.24·107± 0.1 3.03·107 +0.08

−0.07
3d1 →3p5 5.5·106± 0.5 3.92·106± 0.13 4·106 +0.13

−0.1
3d3 →3p4 4.45·107± 0.25 4.22·107± 0.1 4.17·107 +0.08

−0.07
3d2 →3p4 3.91·106± 0.25 4.03·106± 0.13 3.4·106 +0.11

−0.10 yes
3d1 →3p3 − 1.5·107± 0.11 1.42·107 +0.10

−0.10
3d4 →3p2 − 5.94·104± 0.22 5.82·104 +0.24

−0.20
3d1 →3p2 1.6·107± 0.5 1.1·107± 0.11 9.76·106 +0.11

−0.10 yes

95



7. Results

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

3p10->3s4

3p9->3s4

3p8->3s4

3p7->3s4

3p6->3s4

3p5->3s4

3p4->3s4

3p2->3s4

3p10->3s3

3p8->3s3

3p7->3s3

3p6->3s3

3p5->3s3

3p4->3s3

3p3->3s3

3p2->3s3

3p10->3s2

3p7->3s2

3p5->3s2

3p2->3s2

3p10->3s1

3p8->3s1

3p7->3s1

3p6->3s1

3p5->3s1

3p4->3s1

3p3->3s1

3p2->3s1

3p1->3s1

4s2->3p10

4s1->3p10

3d12->3p10

3d11->3p10

3d8->3p10

3d7->3p10

3d4->3p10

3d2->3p10

3d1->3p10

3d9->3p9

3d8->3p9

3d10->3p9

2.73e+07°°
5.28e+07°°
1.74e+07°
6.33e+06

2.87e+07°°
2.76e+06

1.07e+07°
1.17e+07°
1.07e+07°
3.13e+07°°
3.36e+07°°
5.05e+06

3.98e+05

1.82e+07°
5.98e+07°°
6.17e+06°
2.66e+06

1.07e+07°
2.44e+07°
1.66e+07°
1.17e+05

2.98e+06

2.40e+06

1.86e+07°
2.48e+07°°
2.56e+07°°
4.37e+05

2.16e+07°°
7.41e+07°°
2.11e+06

7.48e+05

3.95e+07°°
3.15e+07°°
2.38e+07°°
2.87e+06

4.31e+04

7.79e+06°
2.50e+06

2.60e+06

2.49e+06

5.14e+07°°

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

3d6->3p9

3d5->3p9

3d3->3p9

3d2->3p9

3d11->3p8

3d9->3p8

3d8->3p8

3d7->3p8

3d6->3p8

3d5->3p8

3d4->3p8

3d3->3p8

3d2->3p8

3d1->3p8

3d12->3p7

3d11->3p7

3d8->3p7

3d7->3p7

3d6->3p7

3d4->3p7

3d2->3p7

3d1->3p7

3d11->3p6

3d9->3p6

3d8->3p6

3d7->3p6

3d6->3p6

3d5->3p6

3d4->3p6

3d3->3p6

3d2->3p6

3d1->3p6

3d4->3p5

3d2->3p5

3d1->3p5

3d4->3p4

3d3->3p4

3d2->3p4

3d1->3p4

3d1->3p3

3d4->3p2

3d2->3p2

3d1->3p2

1.08e+06

1.46e+07°
1.27e+05

3.64e+04

1.47e+06
4.00e+07°°
7.20e+05

3.40e+06
1.63e+07°
1.18e+06

1.48e+05
4.21e+06

9.74e+05

3.60e+05
5.73e+06

9.20e+04

1.76e+06

1.41e+07
2.37e+07°°
1.15e+07°
9.30e+05

3.88e+06

5.69e+06
6.25e+06

1.66e+07°
4.44e+05
9.52e+04

3.08e+07°°
6.07e+05

2.97e+06
2.05e+06

3.12e+05

3.25e+07°°
6.82e+05

3.92e+06

5.08e+06
4.22e+07°°
4.03e+06

7.94e+05
1.51e+07°
5.95e+04

3.33e+07°°
1.10e+07°

Figure 7.30.: Marginal probability distributions of the Einstein coefficients. Each column in the plot corre-
sponds to a transition, which is labelled on the left. The values of the Einstein coefficients,
depicted on the abscissa, are divided by the original value of the Einstein coefficient, which is
also given on the right side of the plot. A value of one corresponds to the uncorrected Einstein
coefficient. The error bars, which are also shown are obtained from the 0.16, the 0.5 (median)
and 0.85 quantile of the distribution. Two circles in front of the value of the Einstein coeffi-
cient indicate the dominantly depopulating transition of the initial state. One circle indicates
an Einstein coefficient which is greater than one fifth of the one of dominant depopulating
transition.
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8. Summary

The experimental determination of the electron energy distribution of a low pressure glow dis-
charge in neon from emission spectroscopic data has been demonstrated68. The method extends
an approach by Fischer and Dose5. The spectral data were obtained with a simple overview spec-
trometer and analyzed using a strict probabilistic, Bayesian data analysis. It is this Integrated Data

Analysis2 (IDA) approach, which allows the significant extraction of non-thermal properties of the
electron energy distribution function (EEDF).

The results bear potential as a non-invasive alternative to probe measurements. This allows
the investigation of spatially inhomogeneous plasmas (gradient length smaller than typical probe
sheath dimensions) and plasmas with reactive constituents. The diagnostic of reactive plasmas is
an important practical application, needed e.g. for the monitoring and control of process plasmas.
Moreover, the experimental validation of probe theories for magnetized plasmas as a long-standing
topic in plasma diagnostics could be addressed by the spectroscopic method.

The specific results of this thesis are:

1. The EEDF of a neon glow discharge can be reconstructed by a strict probabilistic modelling
of spectroscopic data.68

The experimental and analytical effort for the demonstration of the reconstruction of the
EEDF from spectroscopic data comprised the following steps:

• Experimental set-up of spectroscopic measurements (production and operation of dis-
charges, optical setup).

• Absolute calibration of the spectral radiance and supplementary measurements for the
determination of the apparatus function, effects of diffraction and reflection, linearity
of the spectrometer.

• Development and implementation of a forward model69,70.

• Quantification of experimental- and model-uncertainties (with emphasis on atomic
data)71.

• Implementation of Bayesian inversion techniques72 (using Markov-Chain-Monte-Carlo)
and parallelized computation.

The probabilistic model for the spectroscopic data consists of a stationary collisional-radi-
ative model (CRM) describing the population densities of excited atoms in the plasma, and
a description of the spectroscopic measurement. The radiation transport in the plasma is
taken into account using effective lifetimes (escape factors) for the respective transitions.
For transitions with a final state in the 3s multiplet, corrections for the non-homogeneity of
the absorber density are included in the computation of the escape factors. The apparatus
function of the spectrometer is obtained from measured spectra with high precision. The
data model delivers a consistent and unbiased description of every feature of the measured
spectrum in the wavelength range from 550 to 900nm. This has not been achieved before
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and is possible due to the employment of an extensive and consistent data set of atomic data
from B-Spline R-Matrix calculations38.

The high precision of the model allows the form-free reconstruction of the EEDF. The EEDF
of the plasma is parameterized using a very flexible, spline based implementation, allowing
the description of a wide class deviations from a thermalized distribution.

The form-free reconstruction73 also requires a thorough incorporation of the uncertainties
of the atomic data set. Unavoidable errors in the atomic data set lead to contradictions
of the analysis concerning the electron distribution, which is over-determined by the large
number of considered spectral lines. These contradictions are resolved, and an unbiased
reconstruction is achieved, by quantifying the correct uncertainty of each element of the
atomic data set for the probabilistic model.

In conclusion, the successful extension of a former study5, by applying the method on a
complex atomic system, indicates the potential of the method for a wider range of applica-
tions.

2. The method is sensitive to non-thermal features of the EEDF.

The electron distribution obtained for the positive column of the plasma is in good agreement
with results from self-consistent kinetic models13 and probe measurements11. Non-thermal
features of the EEDF, like the steepening at the excitation threshold are significantly recon-
structed by the IDA approach.

3. The approach can be applied to spatially inhomogeneous plasmas.

The simulation of the full measured spectrum extends the work in Ref. (5) allowing for
spatially resolved measurements. The reconstruction of the EEDF in the inhomogeneous
anode- and cathode regions of a discharge in neon has been demonstrated. In the anode re-
gion, the increase of the electron energy in the narrow region of the anode fall (about 1mm
in front of the anode), which is not accessible by probe measurements11, could be observed
for the first time. The obtained spatial variation of the EEDF and the electron density is
consistent with the qualitative picture of the processes in front of the anode. Indications
are found for a low energetic electron population, which is connected to the formation of a
positive space-charge in front of the anode8.

In the cathode region, the increase of the electron density and the production of slow elec-
trons in the vicinity of the negative glow can be observed. Indications are found for a division
of the electron distribution in a high and low energetic part in the Aston dark space, which
can possibly be attributed to secondary electrons from ionization and electrons that have
been accelerated in the strong field close to the cathode.

4. Atomic data were validated and give in special cases evidence for atomic physics models.

An extensive study of errors in atomic data allowed conclusions on the validity of atomic
physics models employed for the calculation of atomic data.

The set of electron excitation cross-sections and transition probabilities required for the im-
plementation of the collisional-radiative model is taken from recent theoretic calculations.
Presently, complete and detailed data sets are only available from theory. The direct valida-
tion of the excitation cross-sections requires sophisticated experiments and is only available
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for a small fraction of the data. The uncertainties of the data were quantified in close col-
laboration with the authors38 of the calculations. The probabilistic data analysis allows the
validation of the model parameters with the information from the spectroscopic data. The
consistence of previously unpublished transition probabilities could be confirmed experi-
mentally. Experimental evidence on the magnitude of continuum-coupling effects in the
calculation of the electron excitation cross-sections with final states in the 3d-multiplet was
determined from the emission spectra.

In conclusion, the results of this thesis are an example of the benefit of advanced data analysis
methods in low temperature plasma diagnostics. The use of a detailed data model allows the inter-
pretation of experimental data obtained with a comparably low experimental effort. As an outlook,
it is proposed to investigate spatial inhomogeneities in more detail, e.g., for the validation of probe
theories. It is remarkable, that the increase in significance achieved by systematic Bayesian data
modelling allowed to give relevant feed-back to atomic data providers. Hence, the presented ap-
proach provides a perspective for the validation of atomic physics results by simple spectroscopic
experiments.



8. Summary
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A. Uncertainty of Transfer Function

The probabilistic model summarized in Fig. 5.8, is an example of an hierarchical model50: For-
mally, this manifests in the hyper-parameters s and σs not having a direct influence on the like-
lihood p(~Ds|~s,s,σs) of the data, but rather on the prior distribution of the parameters ~s which
enter the likelihood. In the following, the derivation of a probability distribution function for the
(hyper-)parameters of interest s and σs is given according to the approach described in 6.2.

Data Model The data, which are considered for the estimation of the uncertainty of the appara-
tus function are the residuals ~Ds = Ds,1,Ds,1, . . .Ds,n from the superimposed spectral lines to the
approximating spline as described in 5.8. As the apparatus function of the respective spectral line
is measured directly, the data model is trivial here: Ds,i,sim(~si) = si, see also 5.8, for a description
of the expression used below.

Likelihood The error statistics of the data are determined by the (rescaled) uncertainties of the
spectral measurement, which are described in 4.2.1. This leads to a Gaussian likelihood with a
width σs,i:

p(~Ds|~s,s,σs) =
n

∏
i=1

{
1

σs,i

√
2π

exp

(
−1

2
(si −Ds,i)

2

σ2
s,i

)}
. (A.1)

Priors The prior is composed of a part for the distribution of the different apparatus func-
tions p(~s|s,σs) given the hyper-parameters s and σs as well as the prior distribution for the hyper-
parameters p(s,σs):

p(~s,s,σs) = p(~s|s,σs) · p(s,σs) (A.2)

While p(s,σs) is assumed to be uniform in order to be determined by the data, the first part is a
Gaussian distribution with mean s and standard deviation σs.

p(~s|s,σs) =
n

∏
i=1

{
1

σs

√
2π

exp
(
−1

2
(s− si)

2

σ2
s

)}
(A.3)

Note, that the normalization constant is crucial here, since it contains a factor 1/σs, which contains
a free parameter of the posterior distribution (equation A.4).

Posterior Bayes’ law is used to obtain the pdf for the from the given likelihood and prior distri-
butions:

p(~s,s,σs|~Ds) ∝ p(~Ds|~s,s,σs) · p(~s,s,σs). (A.4)
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A. Uncertainty of Transfer Function

Summary As the conditionality on the si is not of interest here, the posterior is marginalized
over the si to obtain the posterior as a function of the parameters of interest s and σs:

p(s,σs|~Ds) =
∫

p(~s,s,σs|~Ds)ds1, ds2, . . . , dsn,

p(s,σs|~Ds) ∝
1

σn
s ·2π

n

∏
i=1

{∫ ∞

−∞

1
σs,i

exp

[
−1

2

(
(Ds,i − si)

2

σ2
s,i

+
(s− si)

2

σ2
s

)]
dsi

}

=
1

(2π)n/2

n

∏
i=1





1√
σ2

s +σ2
s,i

exp

(
−s2 − s2

i −2sDs,i

2(σ2
s,i +σ2

s )

)
 (A.5)

By maximizing this expression as a function of σs, for a given set of data ~Ds and for s given from
the approximating spline, an estimator for the variation of the apparatus function is obtained.
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B. Autocorrelation

The autocorrelation of the discrete time series θ t variable θ (no index) time t lag k expectation
value of stationary time series θ , variance Var(θ).

Rk =
1

(n− k)Var(θ)
·

n

∑
t=1

(θ t − θ̄)(θ t+k − θ̄) (B.1)

B.1. Non-Linear Least Squares Fit of the Autocorrelation Function

The autocorrelation as a function of the (discrete) time-lag k is fitted with an exponential decaying
function R(k):

R(k) = e−κk (B.2)

where 1/κ is called the autocorrelation length. The residuals ∆Rk of the fit are obtained by:

∆Rk = Rk − e−κk. (B.3)

The sum S of the squared residuals, which is to be minimized reads:

S = ∑
k

(∆Rk)
2 ⇒ ∂S

∂κ

!
= 0 (B.4)

A Taylor expansion of R(k) as a function of κ , at the position κ i (which is intended converge to
the best fit value for κ) is given by:

R(k) = Ri +Ri ′∆κ i + . . . , (B.5)

where the notation

Ri = R(k,κ i) = e−κ ik, and Ri ′ =
∂Ri

∂κ
=−ke−κ ik (B.6)
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B. Autocorrelation

is used. When inserting the Taylor series into the Gradient equations, these can be solved for the
increment ∆κ i, which minimizes the least squares sum in the linear approximation of iteration i:

∂S

∂κ
= ∑

k

∆Rk ·2
∂ (∆Rk)

∂κ︸ ︷︷ ︸
=−Ri ′

!
= 0

⇔ ∑
k

(Rk −Ri(k)−Ri ′∆κ i) · (−2) !
= 0

⇔ ∑
k

(Ri ′)2∆κ i = ∑
k

(Rk −Ri(k)) ·Ri ′

⇔ ∆κ i =
∑k(Rk −Ri(k)) ·Ri ′

∑k(R
i ′)2

⇔ ∆κ i =
∑k(Rk − e−κk) · (−k)e−κ ik

∑k(ke−κ ik)2
(B.7)
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C. Refraction in the Glass Tube
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Figure C.1.: Refraction in the glass tube
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C. Refraction in the Glass Tube

for ∆ ≪ π:

β ≈ arcsin

(
sinδ1 + cos

(
arcsin(

nluft

nglas
sinδ1)

) d · arcsin( nluft
nglas

sinδ1)

R
· nglas

nlu f t

)
. . .

· · ·−δ1 −
d · arcsin( nluft

nglas
sinδ1)

R
(C.1)

C.1. Formulae for the Line-of-Sight Integration

For the line-of-sight integration (equation 5.14), the cross sectional area of the emitting plasma
volume perpendicular to the line-of-sight A⊥ needs to be known. The formulae for its computa-
tion based on the position of the diffracted light rays enclosing the emitting volume as shown in
Fig. C.2. The positions of the enclosing light rays g1 and g2 as well as the center of the line-of-

x1

xs

A
2

g :y=m x+b
2 2

1
g :y=m x+b

1 1

x

.

x2

~

~

~

~

focus

g:y=mx+b

y’

Figure C.2.: Influence of the refraction in the glass cylinder on the line-of-sight of the spectrometer. A⊥ is
the area perpendicular to the central ray of the line of sight. The coordinated of the points in
the sketch are: x̃1 = (x1,y1), x̃2 = (x2,y2), x̃s = (xs,ys)

sight g are determined by the geometrical dimensions of the imaging optic (Fig. C.2) and the effect
of diffraction in the discharge tube. They are known in the form of line-equations in the x-y-plane,
from the calculations described above. For the limitation of the emitting volume in z-direction,
the effect of diffraction does not need to be taken into account, because of the orientation of the
line-of-sight perpendicular to the cylindrical glass tube. The minor radius of A⊥ is given by the
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C.1. Formulae for the Line-of-Sight Integration

width along z of the emitting volume at the point x̃s, where xs is given by:

xs(x,y) =
|ym+ x−bm|

1+m2 (C.2)

The major radius of A⊥ is computed from the half distance between x̃1 and x̃2:

Rb(x,y) =
√
(x2 − x1)2 +(y2 − y1)2 (C.3)

=
|(m1(m(y−b2)+ x)−m2(m(y−b1)+ x)+b1−b2|

√
1.0+m2

2 · (1+m1m)(1+m2m)
(C.4)

The limit of the z-Integration in equation (5.14) depends on the distance of x̃ from the center of the
line-of-sight, which is computed according to:

y′(x,y) =
|y−b−mx|√

1+m2
. (C.5)

The area of A⊥ is obtained from the radii:

A⊥(x,y) = πRa(x,y) ·Rb(x,y). (C.6)
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D. Additional Figures

In the following pages, additional figures are shown, giving further information supporting the
consideration of chapter 7.
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D. Additional Figures
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Figure D.1.: Influence of different model assumptions on the reconstruction of
’synthetic’ data. In each row of the plot, the marginal posterior dis-
tributions of one parameter is shown, see table 7.2, in 7.1.2 for the
names of the indexed parameters. The influence of different radial
profiles of the densities of excited states (red), the influence of a
parameterization of the EEDF with a large number of spline knots
(green) and the influence of a different apparatus function (blue) are
compared to the standard configuration (black). See 7.1.3 for more
details of the used configurations.
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Figure D.2.: Influence of different model assumptions on the reconstruction of
’synthetic’ data. See also caption of Fig. D.1 The influence of a
model configuration without incorporation of the escape factors of
transition with a final state in the 3s-multiplet (red) is compared to
the standard configuration (black), See 7.1.3, for more details.
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Figure D.3.: Influence of different model assumptions on the reconstruction of
spectroscopic data from the positive column of a neon discharge
(p0 = 89Pa, I = 25mA, r0 = 1.5cm). In each row of the plot, the
marginal posterior distributions of one parameter is shown, see ta-
ble 7.2, in 7.1.2 for the names of the indexed parameters. The in-
fluence of different radial profiles of the densities of excited states
(red), the influence of a parameterization of the EEDF with a large
number of spline knots (green) and the influence of a different ap-
paratus function (blue) are compared to the standard configuration
(black). See also 7.1.3 for more details of the used configurations.
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Figure D.4.: Influence of different model assumptions on the reconstruction of
spectroscopic data from the positive column of a neon discharge
(p0 = 89Pa, I = 25mA, r0 = 1.5cm). See also caption of Fig. D.3
The influence of a model configuration without incorporation of the
escape factors of transition with a final state in the 3s-multiplet (red)
is compared to the standard configuration (black), See 7.1.3, for
more details.
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D. Additional Figures
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Figure D.5.: Reconstruction of the EEDF in the positive column of neon dc-discharge using different num-
bers of spline knots. The ordinates depict the number of electrons per energy interval per
volume on a logarithmic scale. The black solid curves, showing the EEDF as obtained in
independent kinetic modelling13, act as a reference. The red curve with error bars shows
then expectation value and variance of the result of the reconstruction (cf. 7.1.2). The dotted
vertical lines indicate the positions of the knots of the spline of the EEDF. The color coded
histogram in the background shows the marginal probability distribution as obtained by the
Monte-Carlo sampling. See also in 7.1.2 for more details of this representation of the result of
the reconstruction.
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E. Labelling of Neon States

Index Label Paschen’s Configuration Configuration Energy [eV]
notation in jK in LS (NIST)

0 2p1 1s1 2p6 1S0 2p6 1S0 0

1 3s4 1s5 2p5(2P◦
3/2)3s 2[ 3

2 ]
◦,J = 2 2p53s 3P2 16.61907

2 3s3 1s4 2p5(2P◦
3/2)3s 2[ 3

2 ]
◦,J = 1 2p53s 3P1 16.67083

3 3s2 1s3 2p5(2P◦
1/2)3s 2[ 1

2 ]
◦,J = 0 2p53s 3P0 16.71538

4 3s1 1s2 2p5(2P◦
1/2)3s 2[ 1

2 ]
◦,J = 1 2p53s 1P1 16.84805

5 3p10 2p10 2p5(2P◦
3/2)3p 2[ 1

2 ],J = 1 2p53p 3S1 18.38162

6 3p9 2p9 2p5(2P◦
3/2)3p 2[ 5

2 ],J = 3 2p53p 3D3 18.55511

7 3p8 2p8 2p5(2P◦
3/2)3p 2[ 5

2 ],J = 2 2p53p 1D2 18.57583
8 3p7 2p7 2p5(2P◦

3/2)3p 2[ 3
2 ],J = 1 2p53p 1P1 18.61270

9 3p6 2p6 2p5(2P◦
3/2)3p 2[ 3

2 ],J = 2 2p53p 3P2 18.63679
10 3p5 2p5 2p5(2P◦

1/2)3p 2[ 3
2 ],J = 1 2p53p 3D1 18.69336

11 3p4 2p4 2p5(2P◦
1/2)3p 2[ 3

2 ],J = 2 2p53p 3D2 18.70407

12 3p3 2p3 2p5(2P◦
3/2)3p 2[ 5

2 ],J = 0 2p53p 1S0 18.71138
13 3p2 2p2 2p5(2P◦

1/2)3p 2[ 1
2 ],J = 1 2p53p 3P1 18.72638

14 3p1 2p1 2p5(2P◦
1/2)3p 2[ 1

2 ],J = 0 2p53p 3P0 18.96595

15 4s4 2p5(2P◦
3/2)4s 2[ 3

2 ]
◦,J = 2 2p54s 3P2 19.66403

16 4s3 2p5(2P◦
3/2)4s 2[ 3

2 ]
◦,J = 1 2p54s 1P1 19.68819

17 4s2 2p5(2P◦
1/2)4s 2[ 1

2 ]
◦,J = 0 2p54s 3P0 19.76060

18 4s1 2p5(2P◦
1/2)4s 2[ 1

2 ]
◦,J = 1 2p54s 3P1 19.77978
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E. Labelling of Neon States

Index Label Paschen’s Configuration Configuration Energy [eV]
notation in jK in LS (NIST)

19 3d12 2p5(2P◦
3/2)3d 2[ 1

2 ]
◦,J = 0 2p53d 3P0 20.02464

20 3d11 2p5(2P◦
3/2)3d 2[ 1

2 ]
◦,J = 1 2p53d 3P1 20.02644

21 3d10 2p5(2P◦
3/2)3d 2[ 7

2 ]
◦,J = 4 2p53d 3F4 20.03465

22 3d9 2p5(2P◦
3/2)3d 2[ 7

2 ]
◦,J = 3 2p53d 1F3 20.03497

23 3d8 2p5(2P◦
3/2)3d 2[ 3

2 ]
◦,J = 2 2p53d 3P2 20.03675

24 3d7 2p5(2P◦
3/2)3d 2[ 3

2 ]
◦,J = 1 2p53d 3D1 20.04049

25 3d6 2p5(2P◦
3/2)3d 2[ 5

2 ]
◦,J = 2 2p53d 1D2 20.04820

26 3d5 2p5(2P◦
3/2)3d 2[ 5

2 ]
◦,J = 3 2p53d 3D3 20.04842

27 3d4 2p5(2P◦
1/2)3d 2[ 5

2 ]
◦,J = 2 2p53d 3F2 20.13611

28 3d3 2p5(2P◦
1/2)3d 2[ 5

2 ]
◦,J = 3 2p53d 3F3 20.13639

29 3d2 2p5(2P◦
1/2)3d 2[ 3

2 ]
◦,J = 2 2p53d 3D2 20.13751

30 3d1 2p5(2P◦
1/2)3d 2[ 3

2 ]
◦,J = 1 2p53d 1P1 20.13956

- 4p10 2p5(2P◦
3/2)4p 2[ 1

2 ],J = 1 20.14965

- 4p9 2p5(2P◦
3/2)4p 2[ 5

2 ],J = 3 20.18843

- 4p8 2p5(2P◦
3/2)4p 2[ 5

2 ],J = 2 20.19692
- 4p7 2p5(2P◦

3/2)4p 2[ 3
2 ],J = 1 20.21099

- 4p6 2p5(2P◦
3/2)4p 2[ 3

2 ],J = 2 20.21418
- 4p5 2p5(2P◦

3/2)4p 2[ 1
2 ],J = 0 20.25918

- 4p4 2p5(2P◦
1/2)4p 2[ 3

2 ],J = 1 20.29091
- 4p3 2p5(2P◦

1/2)4p 2[ 1
2 ],J = 1 20.29717

- 4p2 2p5(2P◦
1/2)4p 2[ 3

2 ],J = 2 20.29728
- 4p1 2p5(2P◦

1/2)4p 2[ 1
2 ],J = 0 20.36885

- 5s4 2p5(2P◦
3/2)5s 2[ 3

2 ]
◦,J = 2 20.56007

- 5s3 2p5(2P◦
3/2)5s 2[ 3

2 ]
◦,J = 1 20.57056

- 5s2 2p5(2P◦
1/2)5s 2[ 1

2 ]
◦,J = 0 20.65655

- 5s1 2p5(2P◦
1/2)5s 2[ 1

2 ]
◦,J = 1 20.66277

- 4d12 2p5(2P◦
3/2)4d 2[ 1

2 ]
◦,J = 0 20.70135

- 4d11 2p5(2P◦
3/2)4d 2[ 1

2 ]
◦,J = 1 20.70230

- 4d10 2p5(2P◦
3/2)4d 2[ 7

2 ]
◦,J = 4 20.70536

- 4d9 2p5(2P◦
3/2)4d 2[ 7

2 ]
◦,J = 3 20.70550

- 4d8 2p5(2P◦
3/2)4d 2[ 3

2 ]
◦,J = 2 20.70679

- 4d7 2p5(2P◦
3/2)4d 2[ 3

2 ]
◦,J = 1 20.70871

- 4d6 2p5(2P◦
3/2)4d 2[ 5

2 ]
◦,J = 2 20.71126

- 4d5 2p5(2P◦
3/2)4d 2[ 5

2 ]
◦,J = 3 20.71139

- (...)
- 4d4 2p5(2P◦

1/2)4d 2[ 5
2 ]

◦,J = 2 20.80392

- 4d3 2p5(2P◦
1/2)4d 2[ 5

2 ]
◦,J = 3 20.80404

- 4d2 2p5(2P◦
1/2)4d 2[ 3

2 ]
◦,J = 2 20.80417

- 4d1 2p5(2P◦
1/2)4d 2[ 3

2 ]
◦,J = 1 20.80551
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